Friendstore: cooperative online backup using trusted :ode

Dinh Nguyen Tran, Frank Chiang, Jinyang Li
New York University

1 Introduction disk space. We propose to trade off bandwidth for disk space
by storing coded data in situations when disk space, instead
Today, it is common for users to own more than tens of gi-of bandwidth, is the more limiting resource. Our scheme,
gabytes of digital pictures, videos, experimental trae¢és, XOR(1,2), doubles the amount of backup information stored
Although many users already back up such data on a chea a node at the cost of transferring twice the amount of data
second disk, it is desirable to also seek off-site redunidanc during restore in order to decode the original data.
so that important data can survive threats such as nateral di The technical challenges addressed in this paper, namely,
asters and operator mistakes. Commercial online backup sefalculating maintainable capacity and trading off bandiwid
vice is expensive [1, 11]. An alternative solution is to usefor storage, are not unique to Friendstore but present in all
a peer-to-peer storage system. However, existing cooperaeplicated storage systems. However, the targeted degloym
tive backup systems are plagued by two long-standing probenvironment of Friendstore makes addressing these chal-
lems [3, 4, 9, 19, 27]: enforcing minimal availability from lenges a pressing need. Friendstore runs on nodes with a wide
participating nodes, and ensuring that nodes storing stherrange of bandwidth and available disk space. Some nodes
backup data will not deny restore service in times of need. may be limited by their upload bandwidth, hence they must
This paper presents Friendstore, a cooperative backup sysefrain from storing more data than the maintainable capaci
tem that differs from previous proposals in one key aspectOther nodes may be limited by the available disk space. As
each node only stores its backup data on a subset of peeach Friendstore node only has a few choices to store data,
nodes chosen by its user. In practice, each user trusts noditss attractive to store more information in the limited klis
belonging to her friends or colleagues. By storing data orspace using coding.
trusted nodes only, Friendstore offers a non-technicatisol The paper is organized as follows: Section 2 discusses
to both the availability and denial-of-service problemsers the underlying trust model that has inspired Friendstae’s
enter “storage contracts” with their friends via real wankl chitecture. We proceed to present Friendstore’s overall de
gotiations. Such contracts are reliable because socilorl sign (Section 3), how a node calculates maintainable cgpaci
ships are at stake. Each user only stores data with her fienqSection 4) and how it trades off bandwidth for storage (Sec-
instead of friends-of-friends because we do not believe nontion 5). In Section 6, we evaluate the long term reliabilify o
direct social relationships can enforce such contradestlgl ~ Friendstore using trace-driven simulations and sharetess
Although Friendstore’s architecture is conceptually danp from our early software deployment.
a number of technical challenges remain in order to provide
reliable long term storage with the highest possible capac-
ity. The capacity of Friendstore is limited by two types of 2 Trust M odel
resources: wide area bandwidth and the available disk space

contributed by participating nodes. Bandwidth is a lingtin The viability of all cooperative backup systems depends on
resource because nodes must re-copy backup data lost duett majority of participants cooperating, hence the nanne. U
failed disks. To prevent a node from storing more data thafortunately, no technical solution can ensure that nodes al
it can reliably maintain, we propose to let each node calcuways cooperate. For example, a node storing others’ data can
late its maintainable capacity based on its upload bantiwidtfajthfully adhere to a system’s protocol for a long time but
and limit the amount of backup data it stores in the systenyecide to maliciously deny service when it is asked to help
accordingly. others restore. Therefore, the best a system can do is to en-
The system’s capacity may also be limited by the availablesure that our assumptions about how “well behaved” nodes
act are highly likely to hold in practice. Systems do so by
Permission to make digital or hard copies of all or part of thork for per- prunmg th_e .SEt of _trustworthy ”Qdes to e“m'_nate m'sms gnd
sonal or classroom use is granted without fee provided thaies are not ~ creating disincentives to violating assumptions in thet firs
made or distributed for profit or commercial advantage aatl¢hpies bear place. For example, a node can frequently check that others
this notice and the full citation on the first page. To copyeottise, to re- are faithfully storing its data and remove any node thasfail
publish, to post on servers or to redistribute to lists, neguprior specific - g .
permission and/or a fee. SocialNets’08, April 1, 2008, Gt&s Scotland, pe_”()d'C c_hecks [3,9,19] f_rom the system. A d|5|ncent|_ve to
UK Copyright 2008 ACM ISBN 978-1-60558-124-8/08/04.. 5. misbehavior could be punishments in the form of deletion of

the offending node’s backup data [9] or expulsion from the stor
system by a central authority [3]. Both of these approache ©""9%¢fles
have drawbacks: pruning mechanisms based on system-lev chunk

. . o . .- list of
health probes can be imprecise (e.g. it is difficult to distin new chunks
guish a node who has just suffered from a hard disk cras

from one that purposefully deleted others’ data). Inflexibl

D«

A\
disincentives (e.g. deletion of an expelled node’s datajcco l L
cause the system to be unnecessarily fragile: it is easy t - nelper
imagine an incident such as unexpected software crashes goma:" e > (®
temporary network congestion leading to an escalatingbpir @:;2 ____________________ helper

of punishments.

Friendstore leverages information in the social relation-
ships among users to select trustworthy nodes and provide
strong disincentives against non-cooperative behaviacthE Figure 1:The sequence of steps an owner takes for preparing a
user chooses a set of trusted nodes that she believes wéipllection of files for backup on remote helpers.
participate in the system over the long term and have some

minimal availability according to her social relationsig\ Backup An owner prepares a collection of files for backup
Friendstore node only stores backup data on those trustq a sequence of steps shown in Figure 1. The owner pro-
nodes. By exploiting real-world relationships in this way, esses the files by chunking large files into smaller pieces,

Frler;]dst_ore 'St able t% use simple Slnd IlghtV\t/e;_ght :ﬁc?mcgﬁompressing and encrypting individual pieces using symmet
mechanisms 1o provide a reasonable expectation that nodga encryption. Finally, it uploads copies of its encrypted

will behave as expecte.d. Friendstore checks for the_presen%hunks on distinct helpers. We use the tegplica to refer to
of remote backup data infrequently and uses a long timeout tﬂwese encrypted chunks stored at helpers. In our prototype

mask transient node failures knowing that the unresponsivqs set to be two. We prefer replication over erasure coding be

tr;gisﬂ?;? gzsat‘i?(;er'ﬁ]:&zr ISAggrzillsl?ﬁ::yeiltjisetg :S tﬁ:rsav{aec cause efficient erasure codes require more helpers than typi
' ’ ys cally available for many owners. Owners do not modify repli-

carry more weight since they stem from possible dlsruptloncas at helpers once created, but can explicitly delete tlhem.

of tr:e sotC|aI frelau’or}s.mp;: v;]c_)lz?]tlon %ftlr.ust resul;shretre— Ih‘?aarbage collect data, helpers also expire replicas aftera d
sentments of one’s friend which we believe most users want, it -ee month period.

to avoid. Friendstore defers punishments for a misbehaving Friendstore discourages one common form of free-riding

node such as deleting O.f its backu_p dgta to |_n(_j|V|duaI userﬁamely, selfish helpers attempting to store less data for oth
who are free to use their own retrlbu_tlon policies based Ofrs than required. To detect such selfish behavior, each node
more complete and accurate information. keeps track of how much backup data its owner has stored
on each of the helpers vs. how much data that helper’s corre-
3 Design Overview sponding node has stored on itself. An owner always prefer;
storing data at the helper who owes it the most storage and if
denied storage by such a helper, the owner reports such inci-

Friendstore consists of a collection of nodes administbyed) _ . S
tdence to its user for punishments or further investigations

different users. Each node runs an identical copy of the sof
ware and communicates with a subset of other nodes over the
wide area network. The software running on a node has twdeify and Repair Each owner periodically checks the
roles: backing up a node’s local data and helping otherg stofh€alth of its remote replicas by requesting its helpers to-co
their backups. We refer to a node asaner when it is per- ~ Pute and return the hash of a randomly chosen replica gartin
forming activities involving its own data andrelper when ~ at arandom offset. By comparing a helper’s hash value with
it is acting to help others. Each node is named and authentfhat computed from its local data, an owner can detect replic
cated by its public key and a user chooses a subset of helpefgTuption and re-send the corrupted replica quickly. When
for storing data by configuring her node with the public keysan owner fails to contact a helper for verification after agiim
of her friends’ nodes. out period, it re-sends all replicas stored on the unrespens
An online backup system undertakes a number of activielper to another helper. Since users explicitly choosgshs!|
ties: to store local data on remote helpers (backup), to perfhat agree to participate over the long term, we believe most
odically check that remote copies of its backup data arke stilfailures are due to transient node offline events as opposed t
intact and create new ones if not (verify and repair), and tg®€rmanent departures. Thus, Friendstore uses a largeuimeo
retrieve remote backups following a disk crash (restore. wthreshold 0200 hours to mask most transient failures.
describe how Friendstore performs each task in turn.
Restore Restoring data after an owner’'s disk crash is
straightforward. However, since the owner might lose at pe

sistent data after a disk crash, it must store its privataiseyl
to encrypt the replicas offline. Friendstore uses a sepseate (®)
vice to help an owner remember the identities of its helpers. owner
During restore, a helper uploads the owner’s data as well as
its own lost replicas previously stored on that node. We must
point out that a helper has no real incentives to help an owner
restore. The reason we believe it is likely to do so in practic
comes from the real world social relationship between users XOR(1,2): 82 ® D1

4 Calculate the maintainable capacity

owner

If backup data is to be stored reliably, it must be re-copied b

owners as disks fail. The rate at which an owner can uploagtigure 2:Helper A usesXOR(1,2) to store coded replicas belong-

data determines the amount of data it can reliably store-on reng to different owners.

mote helpers. This amount could be much less than the disk

space available at helpers. To ensure the reliability okbpc

we do not not want to store more data than can be maintained

over the long term. Therefore, we propose to let each owndf We approximate the average disk lifetime to beears).

calculate its maintainable storage capacity,{,) based on If a user only allocates a fraction of her uplink capacity for

its upload bandwidth and use this estimate to limit how muctHse by Friendstores,.., will be calculated using the throt-

data it attempts to store on helpers. Similarly, we caleulat tled bandwidth. Each owner refrains from storing more than

the maintainable capacity for each helpéy,{.) and use the Smas UnNits of backup data on remote helpers and each helper

estimate to limit the amount of data it contributes to otherdo€s not store more thah,., = 2smas Units of data for

owners. For simplicity, we assume that a node’s download@ther owners.

bandwidth is larger than its upload bandwidth. Similar argu

ments apply when a node’s download bandwidth is the more] . .]

limiting resource. 5 Storemoreinformation with coding
Intuitively, the reliability of replicated data is affectdy

the amount of bandwidth required to recover from permanenbisk space, instead of upload bandwidth, can also be the lim-

disk failures relative to the amount of available bandwilth iting resource in many circumstances. For example, when op-

each node [8]. When an owner storesnits of backup data erating on a college campus network, a helper can reliably

on remote helpers, it must consurke- 2 - s units of band- ~ store up tal,,,., = 754GB data for other owners withMbps

width to re-copy2 replicas per unit of data when disks fail at upload bandwidth. But in reality, its idle disk space can be

rate) ;. Likewise, when a helper storéaunits of replicas for far less tharnd,,..,. Since each Friendstore owner only has

others, it needs to upload one out of every two copies to help few trusted helpers to store data, it is important to @iliz

owners restore, consuming - g units of bandwidth. Since a helpers’ available disk space efficiently. We introduce @-co

node acts both as an owner and a helper, the total bandwidthg scheme, calleXOR(1,2), to let a helper simultaneously

required to recover from permanentfailuresﬁ;s2s+)\f-g. provide redundancy for multiple owners by storing coded

Our simulation results show that when the required recoveryeplicas. The actual coding mechanism is not new and has

bandwidth does not exceed one tenth of the actual availableeen explored in RAID systems [23]. However, Friendstore

bandwidth, there is little data loss: (0.15%) over a five year presents a novel application for coding to enable a helper to

period. Therefore, we can calculate the maintainable géora trade off bandwidth for storage when the available disk epac

capacity 6,4z, dmaz) as follows: is the limiting resource.
Figure 2 illustrates an example in which helpérmust
Af 2 Smaz +Af Dmaa _ b .B-A (1) store replicas for ownerB, C, D. Instead of storing backup
2 10 data from them separately3(, B2, C1, D1), helperA can

In Equation(1), a node’s available upload bandwidth isstoreB1 & C'1 andB2 @ D1, consuming two units of space
measured by its upload link speeft)(scaled by the fraction as opposed td. To restoreB1, helperA needs to fetch the
of time it remains online). original replica C'1) from ownerC' in order to decod#&1, i.e.

As each unit of backup data is replicated twice, helpersB1 = C1 & (B1 @ C1). As this example show%OR(1,2)
must store twice the amount of total backup data. Substitutallows helperA to utilize the original information stored at
iNg dinar = 28maz iNto (1), we obtains,,q, = %. To ownerC to recover data belonging to a different owné) (
calculate the actual value &f,,., an owner uses its mea- but it also consumes additional bandwidth during restore.
sured upload bandwidth, node availability and an approxima Since coding trades off bandwidth for storage, we must

tion of the permanent disk failure rate (eXy. ~ 1/3 years be careful not to apply<OR(1,2) in situations when the

capacity is limited by bandwidth. As Figure 2 shows, with 1
coding, an ownerC must upload its replica again in re-
sponse to owneB’s failure as well as helped’s failure. 0.9
Therefore, we must update Equation (1) to reflect the ad-
ditional replica transfer by an owner wh©OR(1,2) is in
use:ds - (2+1) -8, + % = & - B+ A, resulting in
e = %. Each owner uses the new estimaig, (,) to
constrain the amount of data it attempts to store on remot

on

S 0.7

§Q3rage Uilizati

helpers while allowingKOR(1,2). Similarly, a helper uses 0.6 |
d!. ... to limit the amount of information it stores as coded e o e e —
replicas for other owners. Furthermore, a helper doesri#co . ‘ ‘ Mo di Sk shaces m nes0 -
those replicas for which their owners have not explicitly-pe 0 2 4 6 8 10

M ni num node degree

mitted coding. By allowing coding, an owner agrees to under-

take extra work to upload the original encrypted replicas torjgyre 3:storage utilization as a function of minimum node degree
the helper again during data restore by another owner. Therg, ihe orkut graph. Utilization remains high even when thiersig-
fore, an owner should permit coding only for replicas that co pficant variance among contributed disk space by diffehefpers

respond to immutable data such as media files. We rely on theis shown by the ratio between the maximum and minimum con-
normal verification process to detect replica loss due toune gy teqd space.

pected changes in original files. An owner has incentive to
allow coding because doing so enables it to store more data at
a helper than otherwise possible. Unfortunately, codisg al network as the simulated social graph so each owner stores
causes an owner’s restore process to depend on another owmiata on helpers belonging to its Orkut neighbors. Since each
that might not be directly trusted by its user. Thisis a todfle helper contributes the same amount of disk space as its cor-
that Friendstore leaves to individual users. responding owner tries to consume, a homogeneous storage
Storing coded blocks complicates the normal verificationsystem (e.g. DHash [10], Pastry [28],0penDHT [26]) would
process because a helper is unable to calculate the requestze able to achieve perfect utilization. In comparison, fidie
hash value of the original replica. To enable verificatior, w store’s utilization is less&(¢%). We find that most “wasted”
use a homomorphic collision resistant hash function with th storage space resides on nodes with very low degrees. As
property:ha(z + y) = hg(x)ha(y) whereG(p, ¢, g) spec- our crawled topology is only a subgraph of the Orkut net-
ifies the hash function parameters [17]. To apply this homowork, 23% nodes have less thahcrawled neighbors while
morphic hash function to verify coded replicas, we changdess tharb% Orkut nodes have degrees smaller than five in
the XOR operator irKOR(1,2) to be the addition operation the full graph. We vary the minimum node degree by adding
over Z, (¢ is a large prime). We illustrate the new verifica- new links to the subgraph while preserving the original sub-
tion protocol using Figure 2 as an example. When helper graph’s clustering coefficient @f.23 using the method pro-
asked by owneB to produce the hash for replidal, it first ~ posed in [32]. Figure 3 shows that space utilization inaeas
requests the hash fag; (C1) from ownerC, whereC1isthe quickly to reach more tha®s% when each owner has more
complemento€’1 in Z, and returns to owndB the requested thans helpers, suggesting Friendstore’s utilization is likely t
hash value by computinlg; (B1) = hg(B1 + C1)hg(C1). be high in practice.

Long term data durability We use the FARSITE trace [7]
which monitors the availability of corporate desktop ma-
chines to simulate transient node offline events. The median
%ARSITE node availability i81%. Since the trace only cov-
ers 840 hours, we sample one random node’s up-down se-
guence from the trace eveB40 hours over five simulated
ears. We generate disk failures using a Weibull distribu-
%on to approximate an average disk lifetime3o§ears [30].
Whenever a node suffers a disk failure, we delete all its.data
The failed node rejoins the system six days later and its owne
Storage utilization One concern with Friendstore is that attempts to restore from helpers immediately.
its storage utilization might be low: a node might find out Figure 4 shows the fraction of data lost at the end of
that all of its helpers are full even though available diskyears as a function of the amount of data each owner stores
space exists elsewhere in the system. We show that Friendk Friendstore in the beginning of the experiments. If nodes
store achieves good utilization when operating under typido not backup at all31.2% data will be lost aftels years.
cal social relationships. We use a crawlE$3-node Orkut The loss rate increases as each owner stores more backup

6 Evaluation

This section examines Friendstore’s performance in tefims
storage utilization and long term reliability using trageven
simulations. In addition, we also present statistics fropi-a
lot prototype deployment o1 nodes over a period of two
months and share our lessons learnt from running Frierglsto
in practice.

throttle for Friendstore. We are encouraged to find that the
median upload bandwidth usable by Friendstore is quite high
(624Kbps) and that nodes are fairly available (median avail-
ability is 75%). This suggests that Friendstore’s maintainable
storage capacity is likely to be high in practice.

The pilot deployment has revealed a number of practical
issues for which our early design and prototype lacked good
solutions:

0. 004 T
Xor (1,2), 150kbps ---+--
No codi ng, 150kbps ——
0.0035 | Xor(1,2), 750kbps ——x—
No codi ng, 750kbps —=—

0.003 |
0.0025
0.002 |
0.0015
0.001 | .))
o e The deployed software displays a warning sign for users
gl V)i | whenever a helper cannot be reached during the past five
b . 00 100 200 300 days. We intended for a user to contact her friend to fix
Data backed up per owner GB the problem when noticing these warnings. Instead, our
) users often just ignored warnings altogether. The soft-
Figure 4:The fraction of data lost after they are first backed up ware could be more useful if it can automatically iden-

in the system five years ago as a function of the amount backup tify the source of the problem and email the responsible
data stored in the system by each owner. Experiments arevdtine user to suggest a fix.

different upload bandwidth, with and without coding.

fraction of data lost after 5 yrs

0. 0005

e Our deployed software used existing social relationships

Number of users|| 17 collected by Google Talk and Facebook to help users
~ Number of nodes)| 21 configure trusted nodes. We are surprised to find out that
Maximum nodes per usef 3 many users do not have accounts with either of the pop-

Fraction of time online|| 75.3% (28.6%, 98.6% . : : :
' ular services. This suggests that we will have to provide
Max consecutive hours onling 175 hours (53, 692) 99 P

Max consecutive hours offind 53 hours (13, 120) our own social relationship registration service for fatur

Upload link bandwidth|| 624 kbps (211, 3744) deployments.
Number of neighbors per nodg 3 (1, 7)

Total amount of data backed up 578MB (275, 3077) e Some user owns a few machines and would like to ex-

press separate backup policies for each of them. For ex-

Table 1:Two months deployment statistics of Friendstore from ample, she might want Friendstore to backup her lap-
08/01/2007 to 10/01/2007. Al statistics are shown by theliare top's data on the desktop and not the other way around.
number followed by 20- and 80-percentile in parenthesis. Furthermore, a number of users administer a large pool

of machines. Since the deployed software lacks the no-
tion of a “group”, it is difficult for these users to config-
data at helpers because it cannot promptly re-copy replicas ure and administer Friendstore on a large collection of
lost due to disk failures with limited upload bandwidth. Ac- machines easily.
cording to Equation (1)$mmae = % = 48GB for own-

ers with 150Kbps upload bandwidth anfl1% availability.
sl.qe = 36GBif coding is used. As we can see from Figure 4,
when each owner stores no more thap,.., the probability

of it losing data after five years is very low 0.15%. When

an owner’s upload bandwidth increase§50Kbps, s, in-
creases t@240 GB. We have also simulated cases when an
owner does not attempt to limit the amount of data it backs up
according tos,,,...- Instead, it simply stores more backup data
whenever its upload link becomes idle. With such a greed
strategy, we found that98% of data initially backed up five
years ago is lost at the end of the experiments.

e Many users prefer storing certain subsets of files without
encryption at trusted nodes so their friends can browse
and view the stored files. This suggests that there is po-
tential synergy between backup and file sharing since
both might be able to use Friendstore as a generic repli-
cated storage infrastructure.

The Friendstore software is currently undergoing its sec-
ond major revision to address pitfalls observed in the deplo
¥nent and to support users behind NATSs.

7 Related work
Deployment Lessons Friendstore is fully implemented in
Java and runs on a variety of OSes. We deployed the first veMany researchers have exploited the use of social relation-
sion of the software from August to October 2007 in a smallships for a variety of applications: for example, digitat per-
scale deployment involving7 users and®21 nodes. The2l vation (LOCKSS [20]), file sharing (Maze [33] and Tur-
nodes are of a mixture of university desktops, home deskte [24]), email (Re [13]), web search (Peerspective [22]).
tops and laptop nodes running Windows, Mac and Linux.Many online reputation systems also use social networks to
Table 1 summarizes various statistics from the deploymenimprove their accuracy [15, 21, 29]. Friendstore offers aeho
Users have configured a wide range of upload bandwidtluse of social relationships, namely, to help users choose a s

of trusted nodes for reliable storage. Such user-specifist! t
relationships resemble those in SPKI/SDSI [12] and PGP
certification chain. However, Friendstore’s notion of triss
different from that in certification systems. CrashPlanif?]

a recently released commercial software that allow users to
backup data on friends’ machines. Friendstore shares a simit®!
lar structure but addresses two technical challengesriegsu

a node does not store more data than can be reliably main[-9
tained and trading off bandwidth for storage when disk space
is the more limiting resource. These challenges are not ad”
dressed in our earlier design [18].

There is a vast body of previous work in building reliable H;l
replicated storage systems [5, 8, 14, 16]. Many researchers
have also recognized that bandwidth can often be the lim&*
iting resource when running over wide area nodes [6]. Our
calculation for a node’s maintainable capacity in Sectigsn 4 14
directly inspired by [8] and similar in spirit to [25,31]. Mg
storage systems use coding non-discriminately to store mor, 5
information in the same amount of disk space. In contrast,
Friendstore uses coding to trade off bandwidth for storage, .
and hence it only applies coding when disk space is the more
limiting resource. [17]

6]

[

(18]
8 Conclusion 6]
This paper presents Friendstore, a cooperative backugrsyst (20
that gives users the choice to store backup data only on nodes
they trust. Using trust based on social relationships allow 24
Friendstore to provide a high assurance for reliable backup
Friendstore limits how much data a node stores according t82
its maintainable capacity and uses coding to store more in-
formation when disk space is the more limiting resource. Ouf?3!
initial deployment suggests that Friendstore is a viable-so
tion for online backups. Friendstore is available publiaty
http://ww. news. cs. nyu. edu/ fri endst ore.

[24]
(25]

Acknowledgments [26]
We thank Frank Dabek who helped us greatly improve thig,7
paper. We are grateful to Robert Morris, Frans Kaashoek,
Jinyuan Li and Friendstore’s early users for their encoetag
ment and insightful comments. This project was partially-su [28]
ported by the NSF award CNS-0747052.

(29]

(30]

References
(1]

(2]
K]

Amazon simple storage servicht t p: / / ww. amazon. coni gp/ br owse.
ht M ?node=16427261.

Crashplan: Automatic offsite backupt t p: / / www. cr ashpl an. cont /.
AIYER, A., ALvisl, L., CLEMENT, A., DAHLIN, M., MARTIN, J.,AND PORTH,
C. Bar tolerance for cooperative services.3mposium on Operating Systems
Principles (SOSP) (Oct. 2005).

BATTEN, C., BARR, K., SARAF, A., AND TREPETIN, S. pstore: a secure peer-
to-peer backup system. Tech. Rep. MIT-LCS-TM-632, Masssetts Institute of
Technology, Oct. 2002.

BHAGWAN, R., TATI, K., CHENG, Y., SAVAGE, S.,AND VOELKER, G. M. To-
talrecall: System support for automated availability ngemaent. InProceedings
of the ACM/USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI) (2004).

(31]

(32]

(4] [33]

5

BLAKE, C., AND RODRIGUES R. High availability, scalable storage, dynamic
peer networks: Pick two. 18th Workshop on Hot Topics in Operating Systems
(May 2003).

BoLosky, W., DOUCEUR, J., By, D., AND THEIMER, M. Feasibility of a
serverless distributed file system deployed on an exiset@fsdesktop pcs. In
Proceedings of the international conference on measurement and modeling of
computer systems (SGMETRICS) (2000).

CHUN, B.-G., DaBEK, F., HAEBERLEN, A., SIT, E., WEATHERSPOON H.,
KAASHOEK, M. F., AND MORRIS, R. Efficient replica maintenance for dis-
tributed storage systems. Rroceedings of the 3rd Symposium on Networked
System Design and Implementation (NSDI’ 06) (May 2006).

] Cox, L. P.,AND NOBLE, B. Samsara: Honor among theives in peer-to-peer stor-

age. In19th ACM Symposium on Operating Systems Principles (SOSP) (2003).
DABEK, F., KAASHOEK, M. F., LI, J., MORRIS, R., ROBERTSON J.,AND SIT,
E. Designing a DHT for low latency and high throughput. 16t NSDI (March
2004).

Apple .mac serviceht t p: / / www. appl e. conf dot mac/ .

ELLISON, C., FRANTZ, B., LAMPSON, B., RVEST, R., THOMAS, B., AND
YLONEN, T. Spki certificate theory. RFC 2693, Network Working Grolip86.
GARRISS, S., KAMINSKY, M., FREEDMAN, M. J., KARP, B., MAZIRES, D.,
AND YU, H. Re: reliable email. IProceedings of the 3rd Symposium on Net-
worked System Design and Implementation (NSDI’ 06) (2006).

HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P. Glacier: Highly durable,
decentralized storage despite massive correlated failurth Proceedings of
the 2nd Symposium on Networked Systems Design and Implementation (NSDI)
(2005).

] HOGG, T., AND ADAMIC, L. Enhancing reputation mechanisms via online social

networks. InProceedings of the 5th ACM conference on Electronic Commerce
(2004).

KoTLA, R., Awvisi, L., AND DAHLIN, M. Safestore: A durable and practical
storage system. IWSENIX Annual Technical Conference (2007).

KROHN, M., FREEDMAN, M., AND MAzZIRES, D. On-the-fly verification of
rateless erasure codes for efficient content distributiém.Proceedings of the
|EEE Symposium on Security and Privacy (May 2004).

L1, J.,AND DABEK, F. F2f: reliable storage in open networks.Aroceedings of
the 4th International Workshop on Peer-to-Peer Systems (IPTPS) (2006).
LILLIBRIDGE, M., ELNIKETY, S., BRREL, A., AND BURROWS M. A cooper-
ative internet backup scheme. WSENIX Annual Technical Conference (2003).
MANIATIS, P., RoussopPouLos M., GiuLl, T., ROSENTHAL, D. S. H.,AND
BAKER, M. The LOCKSS peer-to-peer digital preservation systa@M Trans-
actions on Computer Systems 23 (Feb. 2005).

MARTI, S., GANESAN, P.,AND GARCIA-MOLINA, H. DHT routing using so-
cial links. In3rd International Workshop on Peer-to-Peer Systems (IPTPS 2004)
(2004).

MisLoVE, A., GumMADI, K. P., AND DRUSCHEL, P. Exploiting social net-
works for internet search. 1Bth Workshop on Hot Topics in Networks (Hot-
Nets 06) (2006).

PATTERSON, D., GIBSON, G., AND KATZ, R. A case for redundant arrays of
inexpensive disks (raid). IRroceedings of the ACM SIGMOD International Con-
ference on Management of Data (June 1988).

PopPeEscy B. C., QRiSPQ B., AND TANENBAUM, A. S. Safe and private data
sharing with turtle: Friends team-up and beat the systefrda. 12th Cambridge
International Workshop on Security Protocols (2004).

RAMABHADRAN, S., AND PASQUALE, J. Analysis of long-running replicated
systems. IrProceedings of the 25th |EEE Conference on Computer Communica-
tions (INFOCOM) (Apr. 2006).

RHEA, S., GODFREY, B., KARP, B., KuBiaATowICZ, J., RATNASAMY, S.,
SHENKER, S., SOICA, |., AND YU, H. OpenDHT: A public DHT service and
its uses. IrProceedings of ACM SGCOMM (Aug. 2005).

RoOwSTRON A., AND DRUSCHEL, P. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systemd2rticeedings of the 18th
IFIP/ACM International Conference on Distributed Systems Platforms (Middle-
ware 2001) (Nov. 2001).

ROWSTRON A., AND DRUSCHEL, P. Storage managementand caching in PAST,
a large-scale, persistent peer-to-peer storage utilitt8th ACM Symposium on
Operating Systems Principles (SOSP) (2001).

SABATER, J.,AND SIERRA, C. Social regret, a reputation model based on social
relations. INACM S Gecom Exchanges (2002).

SCHROEDER B., AND GIBSON, G. Disk failures in the real world: What does
an MTTF of 1,000,000 hours mean too you? Rroceedings of the 5th Usenix
Conference on File and Sorage Technologies (FAST) (2007).

TATI, K., AND VOELKER, G. On object maintenance in peer-to-peer systems. In
Proceedings of the 5th International Workshop on Peer-to-peer systems (IPTPS)
(Feb. 2006).

TOIVONEN, R., ONNELA, J.-P., 3RAMAKI, J., H'VONEN, J.,AND KASKI, K.

A model for social networksPhysica A Satistical Mechanics and its Applications
371(2006), 851-860.

YANG, M., CHEN, H., ZHAO, B. Y., DAI, Y., AND ZHANG, Z. Deployment of
a large-scale peer-to-peer social networkUBENIX WORLDS (2004).

