
Friendstore: cooperative online backup using trusted nodes

Dinh Nguyen Tran, Frank Chiang, Jinyang Li
New York University

1 Introduction

Today, it is common for users to own more than tens of gi-
gabytes of digital pictures, videos, experimental traces,etc.
Although many users already back up such data on a cheap
second disk, it is desirable to also seek off-site redundancies
so that important data can survive threats such as natural dis-
asters and operator mistakes. Commercial online backup ser-
vice is expensive [1, 11]. An alternative solution is to use
a peer-to-peer storage system. However, existing coopera-
tive backup systems are plagued by two long-standing prob-
lems [3, 4, 9, 19, 27]: enforcing minimal availability from
participating nodes, and ensuring that nodes storing others’
backup data will not deny restore service in times of need.

This paper presents Friendstore, a cooperative backup sys-
tem that differs from previous proposals in one key aspect:
each node only stores its backup data on a subset of peer
nodes chosen by its user. In practice, each user trusts nodes
belonging to her friends or colleagues. By storing data on
trusted nodes only, Friendstore offers a non-technical solution
to both the availability and denial-of-service problems: users
enter “storage contracts” with their friends via real worldne-
gotiations. Such contracts are reliable because social relation-
ships are at stake. Each user only stores data with her friends
instead of friends-of-friends because we do not believe non-
direct social relationships can enforce such contracts reliably.

Although Friendstore’s architecture is conceptually simple,
a number of technical challenges remain in order to provide
reliable long term storage with the highest possible capac-
ity. The capacity of Friendstore is limited by two types of
resources: wide area bandwidth and the available disk space
contributed by participating nodes. Bandwidth is a limiting
resource because nodes must re-copy backup data lost due to
failed disks. To prevent a node from storing more data than
it can reliably maintain, we propose to let each node calcu-
late its maintainable capacity based on its upload bandwidth
and limit the amount of backup data it stores in the system
accordingly.

The system’s capacity may also be limited by the available

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. SocialNets’08, April 1, 2008, Glasgow, Scotland,
UK Copyright 2008 ACM ISBN 978-1-60558-124-8/08/04...$5.00

disk space. We propose to trade off bandwidth for disk space
by storing coded data in situations when disk space, instead
of bandwidth, is the more limiting resource. Our scheme,
XOR(1,2), doubles the amount of backup information stored
at a node at the cost of transferring twice the amount of data
during restore in order to decode the original data.

The technical challenges addressed in this paper, namely,
calculating maintainable capacity and trading off bandwidth
for storage, are not unique to Friendstore but present in all
replicated storage systems. However, the targeted deployment
environment of Friendstore makes addressing these chal-
lenges a pressing need. Friendstore runs on nodes with a wide
range of bandwidth and available disk space. Some nodes
may be limited by their upload bandwidth, hence they must
refrain from storing more data than the maintainable capacity.
Other nodes may be limited by the available disk space. As
each Friendstore node only has a few choices to store data,
it is attractive to store more information in the limited disk
space using coding.

The paper is organized as follows: Section 2 discusses
the underlying trust model that has inspired Friendstore’sar-
chitecture. We proceed to present Friendstore’s overall de-
sign (Section 3), how a node calculates maintainable capacity
(Section 4) and how it trades off bandwidth for storage (Sec-
tion 5). In Section 6, we evaluate the long term reliability of
Friendstore using trace-driven simulations and share lessons
from our early software deployment.

2 Trust Model

The viability of all cooperative backup systems depends on
the majority of participants cooperating, hence the name. Un-
fortunately, no technical solution can ensure that nodes al-
ways cooperate. For example, a node storing others’ data can
faithfully adhere to a system’s protocol for a long time but
decide to maliciously deny service when it is asked to help
others restore. Therefore, the best a system can do is to en-
sure that our assumptions about how “well behaved” nodes
act are highly likely to hold in practice. Systems do so by
pruning the set of trustworthy nodes to eliminate misfits and
creating disincentives to violating assumptions in the first
place. For example, a node can frequently check that others
are faithfully storing its data and remove any node that fails
periodic checks [3, 9, 19] from the system. A disincentive to
misbehavior could be punishments in the form of deletion of

the offending node’s backup data [9] or expulsion from the
system by a central authority [3]. Both of these approaches
have drawbacks: pruning mechanisms based on system-level
health probes can be imprecise (e.g. it is difficult to distin-
guish a node who has just suffered from a hard disk crash
from one that purposefully deleted others’ data). Inflexible
disincentives (e.g. deletion of an expelled node’s data) could
cause the system to be unnecessarily fragile: it is easy to
imagine an incident such as unexpected software crashes or
temporary network congestion leading to an escalating spiral
of punishments.

Friendstore leverages information in the social relation-
ships among users to select trustworthy nodes and provide
strong disincentives against non-cooperative behavior. Each
user chooses a set of trusted nodes that she believes will
participate in the system over the long term and have some
minimal availability according to her social relationships. A
Friendstore node only stores backup data on those trusted
nodes. By exploiting real-world relationships in this way,
Friendstore is able to use simple and lightweight technical
mechanisms to provide a reasonable expectation that nodes
will behave as expected. Friendstore checks for the presence
of remote backup data infrequently and uses a long timeout to
mask transient node failures knowing that the unresponsive-
ness of a trusted neighbor is more likely due to its user’s vaca-
tion than an act of malice. Also, disincentives in this system
carry more weight since they stem from possible disruption
of the social relationships: violation of trust results in the re-
sentments of one’s friend which we believe most users want
to avoid. Friendstore defers punishments for a misbehaving
node such as deleting of its backup data to individual users
who are free to use their own retribution policies based on
more complete and accurate information.

3 Design Overview

Friendstore consists of a collection of nodes administeredby
different users. Each node runs an identical copy of the soft-
ware and communicates with a subset of other nodes over the
wide area network. The software running on a node has two
roles: backing up a node’s local data and helping others store
their backups. We refer to a node as anowner when it is per-
forming activities involving its own data and ahelper when
it is acting to help others. Each node is named and authenti-
cated by its public key and a user chooses a subset of helpers
for storing data by configuring her node with the public keys
of her friends’ nodes.

An online backup system undertakes a number of activi-
ties: to store local data on remote helpers (backup), to peri-
odically check that remote copies of its backup data are still
intact and create new ones if not (verify and repair), and to
retrieve remote backups following a disk crash (restore). We
describe how Friendstore performs each task in turn.

chunk

encrypt

replicate

list of
changed files

list of
new chunks

encrypted
chunks

network

B

C

A

D

compress

owner

helper

helper

helper

Figure 1:The sequence of steps an owner takes for preparing a
collection of files for backup on remote helpers.

Backup An owner prepares a collection of files for backup
in a sequence of steps shown in Figure 1. The owner pro-
cesses the files by chunking large files into smaller pieces,
compressing and encrypting individual pieces using symmet-
ric encryption. Finally, it uploadsr copies of its encrypted
chunks on distinct helpers. We use the termreplica to refer to
these encrypted chunks stored at helpers. In our prototype,r
is set to be two. We prefer replication over erasure coding be-
cause efficient erasure codes require more helpers than typi-
cally available for many owners. Owners do not modify repli-
cas at helpers once created, but can explicitly delete them.To
garbage collect data, helpers also expire replicas after a de-
fault three month period.

Friendstore discourages one common form of free-riding,
namely, selfish helpers attempting to store less data for oth-
ers than required. To detect such selfish behavior, each node
keeps track of how much backup data its owner has stored
on each of the helpers vs. how much data that helper’s corre-
sponding node has stored on itself. An owner always prefers
storing data at the helper who owes it the most storage and if
denied storage by such a helper, the owner reports such inci-
dence to its user for punishments or further investigations.

Verify and Repair Each owner periodically checks the
health of its remote replicas by requesting its helpers to com-
pute and return the hash of a randomly chosen replica starting
at a random offset. By comparing a helper’s hash value with
that computed from its local data, an owner can detect replica
corruption and re-send the corrupted replica quickly. When
an owner fails to contact a helper for verification after a time-
out period, it re-sends all replicas stored on the unresponsive
helper to another helper. Since users explicitly choose helpers
that agree to participate over the long term, we believe most
failures are due to transient node offline events as opposed to
permanent departures. Thus, Friendstore uses a large timeout
threshold of200 hours to mask most transient failures.

Restore Restoring data after an owner’s disk crash is
straightforward. However, since the owner might lose all per-

2

sistent data after a disk crash, it must store its private keyused
to encrypt the replicas offline. Friendstore uses a separateser-
vice to help an owner remember the identities of its helpers.
During restore, a helper uploads the owner’s data as well as
its own lost replicas previously stored on that node. We must
point out that a helper has no real incentives to help an owner
restore. The reason we believe it is likely to do so in practice
comes from the real world social relationship between users.

4 Calculate the maintainable capacity

If backup data is to be stored reliably, it must be re-copied by
owners as disks fail. The rate at which an owner can upload
data determines the amount of data it can reliably store on re-
mote helpers. This amount could be much less than the disk
space available at helpers. To ensure the reliability of backup,
we do not not want to store more data than can be maintained
over the long term. Therefore, we propose to let each owner
calculate its maintainable storage capacity (smax) based on
its upload bandwidth and use this estimate to limit how much
data it attempts to store on helpers. Similarly, we calculate
the maintainable capacity for each helper (dmax) and use the
estimate to limit the amount of data it contributes to other
owners. For simplicity, we assume that a node’s download
bandwidth is larger than its upload bandwidth. Similar argu-
ments apply when a node’s download bandwidth is the more
limiting resource.

Intuitively, the reliability of replicated data is affected by
the amount of bandwidth required to recover from permanent
disk failures relative to the amount of available bandwidthat
each node [8]. When an owner storess units of backup data
on remote helpers, it must consumeλf · 2 · s units of band-
width to re-copy2 replicas per unit of data when disks fail at
rateλf . Likewise, when a helper storesd units of replicas for
others, it needs to upload one out of every two copies to help
owners restore, consumingλf ·

d
2

units of bandwidth. Since a
node acts both as an owner and a helper, the total bandwidth
required to recover from permanent failures is:λf ·2s+λf ·

d
2
.

Our simulation results show that when the required recovery
bandwidth does not exceed one tenth of the actual available
bandwidth, there is little data loss (< 0.15%) over a five year
period. Therefore, we can calculate the maintainable storage
capacity (smax, dmax) as follows:

λf · 2 · smax + λf ·
dmax

2
=

1

10
· B · A (1)

In Equation(1), a node’s available upload bandwidth is
measured by its upload link speed (B) scaled by the fraction
of time it remains online (A).

As each unit of backup data is replicated twice, helpers
must store twice the amount of total backup data. Substitut-
ing dmax = 2smax into (1), we obtainsmax = B·A

30·λf
. To

calculate the actual value ofsmax, an owner uses its mea-
sured upload bandwidth, node availability and an approxima-
tion of the permanent disk failure rate (e.g.λf ≈ 1/3 years

A

D

C

B

XOR(1,2): B1 ⊕ C1
 =

XOR(1,2): B2 ⊕ D1
 =

B1

B2

C1

D1

helper

owner

owner

owner

Figure 2:HelperA usesXOR(1,2) to store coded replicas belong-
ing to different owners.

if we approximate the average disk lifetime to be3 years).
If a user only allocates a fraction of her uplink capacity for
use by Friendstore,smax will be calculated using the throt-
tled bandwidth. Each owner refrains from storing more than
smax units of backup data on remote helpers and each helper
does not store more thandmax = 2smax units of data for
other owners.

5 Store more information with coding

Disk space, instead of upload bandwidth, can also be the lim-
iting resource in many circumstances. For example, when op-
erating on a college campus network, a helper can reliably
store up todmax = 754GB data for other owners with1Mbps
upload bandwidth. But in reality, its idle disk space can be
far less thandmax. Since each Friendstore owner only has
a few trusted helpers to store data, it is important to utilize
helpers’ available disk space efficiently. We introduce a cod-
ing scheme, calledXOR(1,2), to let a helper simultaneously
provide redundancy for multiple owners by storing coded
replicas. The actual coding mechanism is not new and has
been explored in RAID systems [23]. However, Friendstore
presents a novel application for coding to enable a helper to
trade off bandwidth for storage when the available disk space
is the limiting resource.

Figure 2 illustrates an example in which helperA must
store replicas for ownersB, C, D. Instead of storing backup
data from them separately (B1, B2, C1, D1), helperA can
storeB1 ⊕ C1 andB2 ⊕ D1, consuming two units of space
as opposed to4. To restoreB1, helperA needs to fetch the
original replica (C1) from ownerC in order to decodeB1, i.e.
B1 = C1 ⊕ (B1 ⊕ C1). As this example shows,XOR(1,2)
allows helperA to utilize the original information stored at
ownerC to recover data belonging to a different owner (B)
but it also consumes additional bandwidth during restore.

Since coding trades off bandwidth for storage, we must
be careful not to applyXOR(1,2) in situations when the

3

capacity is limited by bandwidth. As Figure 2 shows, with
coding, an ownerC must upload its replica again in re-
sponse to ownerB’s failure as well as helperA’s failure.
Therefore, we must update Equation (1) to reflect the ad-
ditional replica transfer by an owner whenXOR(1,2) is in

use:λf · (2 + 1) · s′max +
d′

max

2
= 1

10
· B · A, resulting in

s′max = B·A
40·λf

. Each owner uses the new estimate (s′max) to
constrain the amount of data it attempts to store on remote
helpers while allowingXOR(1,2). Similarly, a helper uses
d′max to limit the amount of information it stores as coded
replicas for other owners. Furthermore, a helper does not code
those replicas for which their owners have not explicitly per-
mitted coding. By allowing coding, an owner agrees to under-
take extra work to upload the original encrypted replicas to
the helper again during data restore by another owner. There-
fore, an owner should permit coding only for replicas that cor-
respond to immutable data such as media files. We rely on the
normal verification process to detect replica loss due to unex-
pected changes in original files. An owner has incentive to
allow coding because doing so enables it to store more data at
a helper than otherwise possible. Unfortunately, coding also
causes an owner’s restore process to depend on another owner
that might not be directly trusted by its user. This is a tradeoff
that Friendstore leaves to individual users.

Storing coded blocks complicates the normal verification
process because a helper is unable to calculate the requested
hash value of the original replica. To enable verification, we
use a homomorphic collision resistant hash function with the
property:hG(x + y) = hG(x)hG(y) whereG(p, q, g) spec-
ifies the hash function parameters [17]. To apply this homo-
morphic hash function to verify coded replicas, we change
the XOR operator inXOR(1,2) to be the addition operation
overZq (q is a large prime). We illustrate the new verifica-
tion protocol using Figure 2 as an example. When helperA is
asked by ownerB to produce the hash for replicaB1, it first
requests the hash forhG(C̄1) from ownerC, whereC̄1 is the
complement ofC1 in Zq and returns to ownerB the requested
hash value by computinghG(B1) = hG(B1 + C1)hG(C̄1).

6 Evaluation

This section examines Friendstore’s performance in terms of
storage utilization and long term reliability using trace-driven
simulations. In addition, we also present statistics from api-
lot prototype deployment on21 nodes over a period of two
months and share our lessons learnt from running Friendstore
in practice.

Storage utilization One concern with Friendstore is that
its storage utilization might be low: a node might find out
that all of its helpers are full even though available disk
space exists elsewhere in the system. We show that Friend-
store achieves good utilization when operating under typi-
cal social relationships. We use a crawled2363-node Orkut

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

S
t
o
r
a
g
e

U
t
i
l
i
z
a
t
i
o
n

Minimum node degree

max disk space/min=1
max disk space/min=5
max disk space/min=10
max disk space/min=20

Figure 3:Storage utilization as a function of minimum node degree
in the Orkut graph. Utilization remains high even when thereis sig-
nificant variance among contributed disk space by differenthelpers
(as shown by the ratio between the maximum and minimum con-
tributed space.

network as the simulated social graph so each owner stores
data on helpers belonging to its Orkut neighbors. Since each
helper contributes the same amount of disk space as its cor-
responding owner tries to consume, a homogeneous storage
system (e.g. DHash [10], Pastry [28],OpenDHT [26]) would
be able to achieve perfect utilization. In comparison, Friend-
store’s utilization is less (87%). We find that most “wasted”
storage space resides on nodes with very low degrees. As
our crawled topology is only a subgraph of the Orkut net-
work, 23% nodes have less than3 crawled neighbors while
less than5% Orkut nodes have degrees smaller than five in
the full graph. We vary the minimum node degree by adding
new links to the subgraph while preserving the original sub-
graph’s clustering coefficient of0.23 using the method pro-
posed in [32]. Figure 3 shows that space utilization increases
quickly to reach more than95% when each owner has more
than5 helpers, suggesting Friendstore’s utilization is likely to
be high in practice.

Long term data durability We use the FARSITE trace [7]
which monitors the availability of corporate desktop ma-
chines to simulate transient node offline events. The median
FARSITE node availability is81%. Since the trace only cov-
ers 840 hours, we sample one random node’s up-down se-
quence from the trace every840 hours over five simulated
years. We generate disk failures using a Weibull distribu-
tion to approximate an average disk lifetime of3 years [30].
Whenever a node suffers a disk failure, we delete all its data.
The failed node rejoins the system six days later and its owner
attempts to restore from helpers immediately.

Figure 4 shows the fraction of data lost at the end of5
years as a function of the amount of data each owner stores
in Friendstore in the beginning of the experiments. If nodes
do not backup at all,81.2% data will be lost after5 years.
The loss rate increases as each owner stores more backup

4

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 300 200 100 60 20 10

f
r
a
c
t
i
o
n

o
f

d
a
t
a

l
o
s
t

a
f
t
e
r

5

y
r
s

Data backed up per owner GB

Xor(1,2), 150kbps
No coding, 150kbps
Xor(1,2), 750kbps
No coding, 750kbps

Figure 4:The fraction of data lost after they are first backed up
in the system five years ago as a function of the amount backup
data stored in the system by each owner. Experiments are donewith
different upload bandwidth, with and without coding.

Number of users 17
Number of nodes 21

Maximum nodes per user 3
Fraction of time online 75.3% (28.6%, 98.6%)

Max consecutive hours online 175 hours (53, 692)
Max consecutive hours offline 53 hours (13, 120)

Upload link bandwidth 624 kbps (211, 3744)
Number of neighbors per node 3 (1, 7)

Total amount of data backed up 578MB (275, 3077)

Table 1: Two months deployment statistics of Friendstore from
08/01/2007 to 10/01/2007. All statistics are shown by the median
number followed by 20- and 80-percentile in parenthesis.

data at helpers because it cannot promptly re-copy replicas
lost due to disk failures with limited upload bandwidth. Ac-
cording to Equation (1),smax = B·A

30·λf
= 48GB for own-

ers with 150Kbps upload bandwidth and81% availability.
s′max = 36GB if coding is used. As we can see from Figure 4,
when each owner stores no more thansmax, the probability
of it losing data after five years is very low< 0.15%. When
an owner’s upload bandwidth increases to750Kbps,smax in-
creases to240 GB. We have also simulated cases when an
owner does not attempt to limit the amount of data it backs up
according tosmax. Instead, it simply stores more backup data
whenever its upload link becomes idle. With such a greedy
strategy, we found that7.98% of data initially backed up five
years ago is lost at the end of the experiments.

Deployment Lessons Friendstore is fully implemented in
Java and runs on a variety of OSes. We deployed the first ver-
sion of the software from August to October 2007 in a small
scale deployment involving17 users and21 nodes. The21
nodes are of a mixture of university desktops, home desk-
tops and laptop nodes running Windows, Mac and Linux.
Table 1 summarizes various statistics from the deployment.
Users have configured a wide range of upload bandwidth

throttle for Friendstore. We are encouraged to find that the
median upload bandwidth usable by Friendstore is quite high
(624Kbps) and that nodes are fairly available (median avail-
ability is 75%). This suggests that Friendstore’s maintainable
storage capacity is likely to be high in practice.

The pilot deployment has revealed a number of practical
issues for which our early design and prototype lacked good
solutions:

• The deployed software displays a warning sign for users
whenever a helper cannot be reached during the past five
days. We intended for a user to contact her friend to fix
the problem when noticing these warnings. Instead, our
users often just ignored warnings altogether. The soft-
ware could be more useful if it can automatically iden-
tify the source of the problem and email the responsible
user to suggest a fix.

• Our deployed software used existing social relationships
collected by Google Talk and Facebook to help users
configure trusted nodes. We are surprised to find out that
many users do not have accounts with either of the pop-
ular services. This suggests that we will have to provide
our own social relationship registration service for future
deployments.

• Some user owns a few machines and would like to ex-
press separate backup policies for each of them. For ex-
ample, she might want Friendstore to backup her lap-
top’s data on the desktop and not the other way around.
Furthermore, a number of users administer a large pool
of machines. Since the deployed software lacks the no-
tion of a “group”, it is difficult for these users to config-
ure and administer Friendstore on a large collection of
machines easily.

• Many users prefer storing certain subsets of files without
encryption at trusted nodes so their friends can browse
and view the stored files. This suggests that there is po-
tential synergy between backup and file sharing since
both might be able to use Friendstore as a generic repli-
cated storage infrastructure.

The Friendstore software is currently undergoing its sec-
ond major revision to address pitfalls observed in the deploy-
ment and to support users behind NATs.

7 Related work

Many researchers have exploited the use of social relation-
ships for a variety of applications: for example, digital preser-
vation (LOCKSS [20]), file sharing (Maze [33] and Tur-
tle [24]), email (Re [13]), web search (Peerspective [22]).
Many online reputation systems also use social networks to
improve their accuracy [15,21,29]. Friendstore offers a novel
use of social relationships, namely, to help users choose a set

5

of trusted nodes for reliable storage. Such user-specified trust
relationships resemble those in SPKI/SDSI [12] and PGP
certification chain. However, Friendstore’s notion of trust is
different from that in certification systems. CrashPlan [2]is
a recently released commercial software that allow users to
backup data on friends’ machines. Friendstore shares a simi-
lar structure but addresses two technical challenges: ensuring
a node does not store more data than can be reliably main-
tained and trading off bandwidth for storage when disk space
is the more limiting resource. These challenges are not ad-
dressed in our earlier design [18].

There is a vast body of previous work in building reliable
replicated storage systems [5, 8, 14, 16]. Many researchers
have also recognized that bandwidth can often be the lim-
iting resource when running over wide area nodes [6]. Our
calculation for a node’s maintainable capacity in Section 4is
directly inspired by [8] and similar in spirit to [25,31]. Many
storage systems use coding non-discriminately to store more
information in the same amount of disk space. In contrast,
Friendstore uses coding to trade off bandwidth for storage
and hence it only applies coding when disk space is the more
limiting resource.

8 Conclusion

This paper presents Friendstore, a cooperative backup system
that gives users the choice to store backup data only on nodes
they trust. Using trust based on social relationships allows
Friendstore to provide a high assurance for reliable backup.
Friendstore limits how much data a node stores according to
its maintainable capacity and uses coding to store more in-
formation when disk space is the more limiting resource. Our
initial deployment suggests that Friendstore is a viable solu-
tion for online backups. Friendstore is available publiclyat
http://www.news.cs.nyu.edu/friendstore.

Acknowledgments

We thank Frank Dabek who helped us greatly improve this
paper. We are grateful to Robert Morris, Frans Kaashoek,
Jinyuan Li and Friendstore’s early users for their encourage-
ment and insightful comments. This project was partially sup-
ported by the NSF award CNS-0747052.

References
[1] Amazon simple storage service.http://www.amazon.com/gp/browse.

html?node=16427261.
[2] Crashplan: Automatic offsite backup.http://www.crashplan.com//.
[3] A IYER, A., ALVISI , L., CLEMENT, A., DAHLIN , M., MARTIN , J.,AND PORTH,

C. Bar tolerance for cooperative services. InSymposium on Operating Systems
Principles (SOSP) (Oct. 2005).

[4] BATTEN, C., BARR, K., SARAF, A., AND TREPETIN, S. pstore: a secure peer-
to-peer backup system. Tech. Rep. MIT-LCS-TM-632, Massachusetts Institute of
Technology, Oct. 2002.

[5] BHAGWAN , R., TATI , K., CHENG, Y., SAVAGE, S.,AND VOELKER, G. M. To-
talrecall: System support for automated availability management. InProceedings
of the ACM/USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI) (2004).

[6] BLAKE , C., AND RODRIGUES, R. High availability, scalable storage, dynamic
peer networks: Pick two. In9th Workshop on Hot Topics in Operating Systems
(May 2003).

[7] BOLOSKY, W., DOUCEUR, J., ELY, D., AND THEIMER, M. Feasibility of a
serverless distributed file system deployed on an existing set of desktop pcs. In
Proceedings of the international conference on measurement and modeling of
computer systems (SIGMETRICS) (2000).

[8] CHUN, B.-G., DABEK , F., HAEBERLEN, A., SIT, E., WEATHERSPOON, H.,
KAASHOEK, M. F., AND MORRIS, R. Efficient replica maintenance for dis-
tributed storage systems. InProceedings of the 3rd Symposium on Networked
System Design and Implementation (NSDI’06) (May 2006).

[9] COX, L. P.,AND NOBLE, B. Samsara: Honor among theives in peer-to-peer stor-
age. In19th ACM Symposium on Operating Systems Principles (SOSP) (2003).

[10] DABEK , F., KAASHOEK, M. F., LI, J., MORRIS, R., ROBERTSON, J.,AND SIT,
E. Designing a DHT for low latency and high throughput. In1st NSDI (March
2004).

[11] Apple .mac service.http://www.apple.com/dotmac/.
[12] ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND

YLONEN, T. Spki certificate theory. RFC 2693, Network Working Group, 1986.
[13] GARRISS, S., KAMINSKY, M., FREEDMAN, M. J., KARP, B., MAZIRES, D.,

AND YU, H. Re: reliable email. InProceedings of the 3rd Symposium on Net-
worked System Design and Implementation (NSDI’06) (2006).

[14] HAEBERLEN, A., M ISLOVE, A., AND DRUSCHEL, P. Glacier: Highly durable,
decentralized storage despite massive correlated failures. In Proceedings of
the 2nd Symposium on Networked Systems Design and Implementation (NSDI)
(2005).

[15] HOGG, T., AND ADAMIC , L. Enhancing reputation mechanisms via online social
networks. InProceedings of the 5th ACM conference on Electronic Commerce
(2004).

[16] KOTLA , R., ALVISI , L., AND DAHLIN , M. Safestore: A durable and practical
storage system. InUSENIX Annual Technical Conference (2007).

[17] KROHN, M., FREEDMAN, M., AND MAZIRES, D. On-the-fly verification of
rateless erasure codes for efficient content distribution.In Proceedings of the
IEEE Symposium on Security and Privacy (May 2004).

[18] L I, J.,AND DABEK , F. F2f: reliable storage in open networks. InProceedings of
the 4th International Workshop on Peer-to-Peer Systems (IPTPS) (2006).

[19] L ILLIBRIDGE , M., ELNIKETY, S., BIRREL, A., AND BURROWS, M. A cooper-
ative internet backup scheme. InUSENIX Annual Technical Conference (2003).

[20] MANIATIS , P., ROUSSOPOULOS, M., GIULI , T., ROSENTHAL, D. S. H.,AND

BAKER, M. The LOCKSS peer-to-peer digital preservation system.ACM Trans-
actions on Computer Systems 23 (Feb. 2005).

[21] MARTI, S., GANESAN, P., AND GARCIA-MOLINA , H. DHT routing using so-
cial links. In 3rd International Workshop on Peer-to-Peer Systems (IPTPS 2004)
(2004).

[22] M ISLOVE, A., GUMMADI , K. P., AND DRUSCHEL, P. Exploiting social net-
works for internet search. In5th Workshop on Hot Topics in Networks (Hot-
Nets’06) (2006).

[23] PATTERSON, D., GIBSON, G., AND KATZ, R. A case for redundant arrays of
inexpensive disks (raid). InProceedings of the ACM SIGMOD International Con-
ference on Management of Data (June 1988).

[24] POPESCU, B. C., CRISPO, B., AND TANENBAUM , A. S. Safe and private data
sharing with turtle: Friends team-up and beat the system. InProc. 12th Cambridge
International Workshop on Security Protocols (2004).

[25] RAMABHADRAN , S., AND PASQUALE, J. Analysis of long-running replicated
systems. InProceedings of the 25th IEEE Conference on Computer Communica-
tions (INFOCOM) (Apr. 2006).

[26] RHEA, S., GODFREY, B., KARP, B., KUBIATOWICZ , J., RATNASAMY, S.,
SHENKER, S., STOICA, I., AND YU, H. OpenDHT: A public DHT service and
its uses. InProceedings of ACM SIGCOMM (Aug. 2005).

[27] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. InProceedings of the 18th
IFIP/ACM International Conference on Distributed Systems Platforms (Middle-
ware 2001) (Nov. 2001).

[28] ROWSTRON, A., AND DRUSCHEL, P. Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility. In 18th ACM Symposium on
Operating Systems Principles (SOSP) (2001).

[29] SABATER, J.,AND SIERRA, C. Social regret, a reputation model based on social
relations. InACM SIGecom Exchanges (2002).

[30] SCHROEDER, B., AND GIBSON, G. Disk failures in the real world: What does
an MTTF of 1,000,000 hours mean too you? InProceedings of the 5th Usenix
Conference on File and Storage Technologies (FAST) (2007).

[31] TATI , K., AND VOELKER, G. On object maintenance in peer-to-peer systems. In
Proceedings of the 5th International Workshop on Peer-to-peer systems (IPTPS)
(Feb. 2006).

[32] TOIVONEN, R., ONNELA , J.-P., SARAM ÄKI , J., HYV ÖNEN, J.,AND KASKI, K.
A model for social networks.Physica A Statistical Mechanics and its Applications
371 (2006), 851–860.

[33] YANG, M., CHEN, H., ZHAO, B. Y., DAI , Y., AND ZHANG, Z. Deployment of
a large-scale peer-to-peer social network. InUSENIX WORLDS (2004).

6

