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Abstract— Protocols for distributed hash tables (DHTs) incor-
porate features to achieve low latency for lookup requests in the
face of churn, continuous changes in membership. These protocol
features can include a directed identifier space, parallel lookups,
pro-active flooding of membership changes, and stabilization
protocols for maintaining accurate routing. In addition, DHT
protocols have parameters that can be tuned to achieve different
tradeoffs between lookup latency and communication cost due to
maintenance traffic. The relative importance of the features and
parameters is not well understood, because most previous work
evaluates protocols on static networks.

This paper presents a performance versus cost framework
(PVC) that allows designers to compare the effects of different
protocol features and parameter values. PVC views a protocol as
consuming a certain amount of network bandwidth in order to
achieve a certain lookup latency, and helps reveal the efficiency
with which protocols use additional network resources to improve
latency. To demonstrate the value of PVC, this paper simulates
Chord, Kademlia, Kelips, OneHop, and Tapestry under different
workloads and uses PVC to understand which features are
more important under churn. PVC analysis shows that the key
to efficiently using additional bandwidth is for a protocol to
adjust its routing table size. It also shows that routing table
stabilization is wasteful and can be replaced with opportunistic
learning through normal lookup traffic. These insights combined
demonstrate that PVC is a valuable tool for DHT designers.

I. INTRODUCTION

Designing a DHT lookup protocol for static networks is
well-understood. Typical designs forward lookups for keys
through routing tables that point to other hosts. Different DHTs
form different topologies with these routing tables, which
result in different asymptotic tradeoffs of the amount of per-
node state and the number of network hops during lookups.
Most DHTs find low latency neighbors using techniques such
as Proximity Neighbor Selection (PNS) [1]. With a few excep-
tions [2]–[5], most previous work evaluates lookup latency in
a static network, as described in Section VI on related work.

Lookup latency alone is not sufficient to evaluate protocols
under churn, where nodes continuously join and leave the
network, because the latency metric does not account for
the cost of maintaining the state required to achieve low
latency. Evaluating lookup performance in static networks
tends to favor protocols that keep large routing tables, since
they pay no penalty to keep the tables up to date, and more
routing entries generally results in lower lookup hop-counts
and latencies. Large routing tables incur costs, however: they
require maintenance traffic to keep them up to date, and if
they become out of date then stale entries may cause timeout

delays. Thus an evaluation criterion for DHT protocols under
churn should reflect the relationship between latency and cost.

One of the main contributions of this paper is a simple
performance versus cost framework (PVC).1 PVC measures
cost as the amount of network traffic that a DHT’s lookups
and maintenance traffic incur. For its performance metric, PVC
measures the failure rate and latency of DHT lookups. PVC
helps designers compare the effects of different design choices
in each DHT through the systematic exploration of various
combinations of protocol parameters. It is often misleading to
evaluate the performance benefits of any one design choice in
isolation, as all design choices improve performance at the cost
of extra communications. To design better DHTs, we need to
understand which design choice is more efficient than others at
using extra communication bits. For example, the methodology
allows a comparison of fast stabilization and parallel lookups
in a way that considers both their ability to reduce latency and
the fact that both techniques increase bandwidth consumption.

Another contribution of this paper is an extensive PVC-
based simulation study of a wide range of DHT protocols
(Chord [7], Kademlia [8], Kelips [9], OneHop [10], and
Tapestry [11]). The study explores how the protocols’ design
choices and parameters affect their efficiency under churn.
Table I summarizes the paper’s observations about DHT design
choices and parameters. This case study of existing DHTs
using PVC reveals that the key to efficient bandwidth use is
for a DHT node to adjust its routing table size in response to
extra bandwidth and churn. PVC also shows that opportunistic
learning through existing DHT lookup traffic is more efficient
than active routing table stabilization. These results taken
together demonstrate the value of PVC as a tool to design
and evaluate DHT protocols.

This study does not model storage or transmission of DHT
data. Under high churn, the cost of keeping DHT data available
might dwarf the routing table maintenance cost. A different
set of techniques such as replication with lazy repair [12] can
be used to reduce DHT data maintenance cost under churn.
Additionally, the simulator used in this study does not model
queuing delay or packet loss, and thus cannot evaluate protocol
features intended to reduce congestion.

The rest of the paper is organized as follows. Section II mo-
tivates and presents PVC. Section III summarizes the salient
properties of the DHTs this paper compares, and Section IV
describes the experimental methodology. Section V evaluates

1We introduced a preliminary version of PVC in a position paper [6].



Section Insights
V Minimizing lookup latency requires complex workload-dependent parameter tuning.
V-A The ability of a protocol to control its bandwidth usage has a direct impact on its scalability and performance under different network

sizes.
V-B DHTs that distinguish between state used for the correctness of lookups and state used for lookup performance can more efficiently

achieve low lookup failure rates under churn.
V-C The strictness of a DHT protocol’s routing distance metric, while useful for ensuring progress during lookups, limits the number of

possible paths, causing poor performance under pathological network conditions such as non-transitive connectivity.
V-D Increasing routing table size to reduce the number of expected lookup hops is a more cost-efficient way to cope with churn-related

timeouts than stabilizing more often.
V-E Issuing copies of a lookup along many paths in parallel is more effective at reducing lookup latency due to timeouts than faster

stabilization under a churn intensive workload.
V-F Learning about new nodes during the lookup process can essentially eliminate the need for stabilization in some workloads.
V-G Increasing the rate of lookups in the workload, relative to the rate of churn, favors all design choices that reduce the overall lookup

traffic. For example, one should use extra state to reduce lookup hops (and hence forwarded lookup traffic). Less lookup parallelism
is also preferred as it generates less redundant lookup traffic.

TABLE I

INSIGHTS OBTAINED BY USING PVC TO EVALUATE A SET OF PROTOCOLS (CHORD, KADEMLIA, KELIPS, ONEHOP AND TAPESTRY).

the impact of different design decisions on performance under
churn. Section VI relates this paper’s study to previous studies.
Finally, Section VII summarizes our findings.

II. PVC: A PERFORMANCE VS. COST FRAMEWORK

The goal of PVC is to address two challenges in evaluating
lookup protocols for DHTs. First, most protocols can be
tuned to have low lookup latency by including features such
as aggressive membership maintenance, faster routing state
refreshes, parallel lookups, or a more thorough exploration of
the network to find low latency neighbors. Not only do these
features make straightforward comparisons of the performance
of different DHT protocols difficult, but they also complicate
the evaluation of new features, since protocol features typically
improve lookup performance by consuming resources. Thus a
comparison of DHT protocols must evaluate the efficiency with
which they exploit additional resources to reduce latency. A
good framework should use a metric which quantifies the cost,
as well as the performance, of protocols.

The second challenge is coping with each protocol’s set
of tunable parameters (e.g., stabilization interval, etc.). The
best parameter values for a given workload are often hard to
predict, so there is a danger that a performance evaluation
might reflect the evaluator’s parameter choices more than it
reflects the underlying algorithm. In addition, parameters often
correspond to a given protocol feature. A good framework
should allow designers to judge the extent to which each
parameter (and thus each feature) contributes to an efficient
performance vs. cost tradeoff.

A. The PVC Approach

In response to these two challenges, we propose PVC, a per-
formance vs. cost framework and evaluation methodology for
assessing DHT protocols, comparing different design choices
and evaluating new features.

PVC uses the average number of bytes sent per node
per unit time as the cost metric. This cost accounts for all
messages sent by a node, including periodic routing table
refresh traffic, lookup traffic, and join traffic. PVC ignores

state storage costs (e.g., the size of each node’s routing table)
because communication is typically far more expensive than
storage. The main cost of state is often the communication
cost necessary for maintaining the correctness of that state.

In PVC, nodes try to forward lookups to the node responsi-
ble for the lookup key. The identity of the responsible node is
returned to the sender as the result of the lookup. A lookup is
considered failed if it returns the wrong node among the cur-
rent set of participating nodes (i.e. those that have completed
the join procedure correctly) at the time the sender receives
the lookup reply, or if the sender receives no reply within
some timeout window. PVC uses two metrics to characterize
a DHT’s performance: median latency of successful lookups
and lookup failure rate. PVC only incorporates lookup hop-
count indirectly, to the extent that it contributes to latency. In
the presence of churn, routing tables tend to become incorrect
or out of date, causing lookups to suffer timeouts or completely
fail. DHTs often recover from lookup timeouts by retrying the
lookup through an alternate neighbor.

In the interest of a fair comparison, DHTs should follow a
few common guidelines for dealing with lookup timeouts. In
PVC experiments, all protocols time out individual messages
after an interval of three times the round-trip time to the target
node, though more sophisticated techniques are possible [3],
[4], [13], [14]. Following the conclusions of previous stud-
ies [3], [4], a node encountering a timeout to a particular
neighbor during a lookup does not immediately declare that
neighbor dead; the lookup proceeds to an alternate node if one
exists, and recovery does not begin for the failed neighbor until
several RPC timeouts to that neighbor occur.

All protocols retry lookups for up to a maximum of four
seconds, after which PVC declares that the lookup has failed.
This definition of failure is arbitrary: a shorter maximum
time would decrease average latency while increasing failure
rate, while a longer maximum would increase average latency
while decreasing the failure rate. Further, each failed lookup
contributes a disproportionate four seconds to the average
lookup latency statistic. For these reasons PVC measures
lookup failure rate and median lookup latency as separate
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Fig. 1. Performance vs. cost tradeoff in Kelips, churn intensive work-
load. Each point represents the median lookup latency of successful
lookups vs. the communication cost achieved for a unique set of
parameter values. The convex hull (solid line) represents the best
achievable performance/cost combinations.

performance metrics.
PVC needs a workload. The amount a protocol must com-

municate to keep node routing tables up to date depends on
how frequently nodes join and crash (the churn rate). For the
most part, the total bandwidth consumed by a protocol is a
balance between table maintenance traffic and lookup traffic,
so the main characteristic of a workload is the relationship
between lookup rate and churn rate. This paper investigates
two workloads, one that is churn intensive and one that is
lookup intensive.

B. Overall Convex Hulls

To find the best performance/cost tradeoff for a DHT with
many tunable parameters, PVC systematically simulates the
DHT with different combinations of parameter values. PVC
measures the performance and cost for each combination; this
paper shows the results as graphs with average bandwidth
usage on the x-axis and median lookup latency or failure
rate on the y-axis. For example, Figure 1 shows bandwidth
and latency for Kelips with different parameter combinations
under a particular workload. There is no single best parameter
combination for this workload. Instead, there is a set of most
efficient combinations: for each cost, there is a smallest achiev-
able lookup latency, and for each lookup latency, there is a
smallest achievable communication cost. The curve connecting
these most efficient points is the overall convex hull segment
(shown by the solid line in Figure 1). PVC uses convex hulls to
find the best performance/cost tradeoffs for a given workload.
It is possible that better combinations exist but that PVC failed
to find them.

The convex hull in Figure 1 outlines the most efficient
parameter combinations found by PVC. A DHT operator
would have to adjust these parameters manually in the absence
of a self-tuning protocol [4], [15].

C. Parameter Convex Hulls

Figure 1 shows the combined effect of many parameters.
PVC can also be used to evaluate whether a particular pa-
rameter is more important to tune than others in order to

achieve the best performance/cost tradeoff. This is done by
calculating a set of convex hulls, one for each value of the
parameter under study. Each convex hull is generated by fixing
the parameter of interest and varying all others. The positions
of these parameter convex hulls relative to the overall convex
hull indicates the relative “importance” of the parameter: the
performance benefit obtainable by tuning the parameter to
consume more bandwidth.

Figure 2 presents parameter convex hulls for two different
parameters, each compared with the overall convex hull. The
parameter in Figure 2(a) has a single best value (32) for this
workload. The parameter in Figure 2(b) is comparatively much
more important to tune. No single parameter convex hull lies
entirely along the overall hull; rather, the overall hull is made
up of segments from different parameter hulls. This suggests
the parameter should be tuned based on the application’s
desired latency/bandwidth tradeoff.

One can quantify the importance of a particular parameter
value by calculating the area between the parameter’s hulls and
the overall convex hull over a fixed range of the x-axis (the
cost range of interest). Figure 3 shows an example. The smaller
the area, the more closely a parameter hull approximates the
best overall hull. The minimum area over all of a parameter’s
values indicates how important it is to tune the parameter. The
bigger the minimum area, the more important the parameter
since there is a larger potential for inefficiency by setting the
parameter to a single value. Figure 2(a) shows a parameter
with nearly zero minimum area, while Figure 2(b) shows a
parameter with a large minimum area. Hence, it is relatively
more important to tune the latter.

There is a relationship between this notion of parameter im-
portance and the efficiency of DHT mechanisms. Suppose that
an important parameter affects how much network bandwidth
a particular DHT mechanism consumes; for example, the
parameter might control how often a DHT stabilizes its routing
table entries. If more network capacity becomes available,
then any re-tuning of the DHT’s parameters to make best use
of the new capacity will likely require tuning this important
parameter. That is, important parameters have the most effect
on the DHT’s ability to use extra communication bandwidth
to achieve low latency, and in that sense important parameters
correspond to efficient DHT mechanisms.

III. PROTOCOL OVERVIEWS

This paper studies design choices made by five existing
protocols: Tapestry [11], Chord [7], Kelips [9], Kademlia [8]
and OneHop [10]. This section provides brief overviews of
each DHT, identifying protocol parameters that relate to the
design choices under study.

A. Tapestry

The ID space in Tapestry is structured as a tree. A Tapestry
node ID can be viewed as a sequence of l base-b digits. The
node the maximum number of matching prefix digits with
the key is the node responsible for the key. In a network
of n nodes, each node’s routing table contains approximately
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Fig. 2. Convex hull segments for two different parameters, in comparison with the overall convex hull. The left graph shows a parameter
that has a single fixed value that achieves best performance. The right graph shows a parameter that must take on different values to
achieve different best performance/cost tradeoffs.
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Fig. 3. The efficiency of param1 with a value of 2 (from Figure 2(a))
compared with the efficiency of the overall convex hull. The striped
area between the two curves represents the efficiency difference
between param1=2 and the best configurations between a cost range
of 8 to 100 bytes/node/s.

Parameter Range
Base b 2 – 128
Stabilization interval tstab 18 sec – 19 min
Number of backup nodes nredun 1 – 8
Number of nodes contacted nrepair 1 – 10
during repair

TABLE II

TAPESTRY PARAMETERS

logb(n) levels, each with b distinct ID prefixes. Nodes in the
mth level share a prefix of length m−1 digits, but differ in the
mth digit. Each entry may contain up to nredun nodes, sorted
by latency. The closest of these nodes is the entry’s primary
neighbor; the others serve as backup neighbors. Tapestry uses
a nearest neighbor algorithm [16] to populate its routing table
entries with nearby nodes.

Nodes forward a lookup by resolving successive digits in the
lookup key (prefix-based routing). When no more digits can be
resolved, an algorithm known as surrogate routing determines
exactly which node is responsible for the key [11]. Routing in

Tapestry is recursive.

For lookups to be correct, at least one neighbor in each
routing prefix must be alive. Tapestry checks the liveness of
each primary neighbor every tstab seconds. If the node is
found to be dead, the next closest backup in that entry (if one
exists) becomes the primary. When a node declares a primary
neighbor dead, it contacts some number of other neighbors
(nrepair) asking for a replacement. Table II lists Tapestry’s
parameters varied in our simulations.

B. Chord

Chord structures its identifiers in a circle. The node respon-
sible for a key y is its successor (i.e., the first node whose ID
is equal to k, or follows y in the ID space) using consistent
hashing [17]. In Chord, a lookup for a key terminates at the
key’s predecessor, the node whose ID most closely precedes
the key and it returns the successor as the lookup’s value.
A node in base-b Chord keeps (b − 1) logb(n) fingers whose
IDs lie at exponentially increasing fractions of the ID space
away from itself. Each node keeps a successor list of nsucc

nodes. Chord uses the Proximity Neighbor Selection (PNS)
method discussed in [1], [13], [18]. To obtain each ith PNS
finger, a node retrieves the successor list of nsucc nodes from
a node with ID ( b−1

b
)i+1 away from itself and chooses the

node closest in network latency to itself as the ith PNS finger.
Chord can route either iteratively or recursively [7]; this paper
presents results for the latter.

A Chord node checks all its fingers for liveness every
tfinger seconds. For each finger found dead, the node issues
a lookup for a replacement PNS finger. A node separately
stabilizes its successor list periodically (tsucc) by retrieving
and merging its successors’ predecessor and successor lists.
Table III lists the Chord parameters that we vary in our
simulations.



Parameter Range
Base b 2 – 128
Finger stabilization interval tfinger 18 sec – 19 min
Number of successors nsucc 8,16,32
Successor stabilization interval tsucc 18 sec – 4.8 min

TABLE III

CHORD PARAMETERS

Parameter Range
Gossip interval tgossip 10 sec – 19 min
Group ration rgroup 8, 16, 32
Contact ration rcontact 8, 16, 32
Contacts per group ncontact 2, 8, 16, 32
Routing entry timeout tout 6, 18, 30 min

TABLE IV

KELIPS PARAMETERS

C. Kelips

Kelips divides the identifier space into g ≈ √
n groups. A

node’s group is its ID modulo g. Each node’s routing table
contains an entry for each other node in its own group, and
ncontact “contact” nodes from each of the foreign groups. Thus
a node’s routing table size is

√
n+ ncontact ∗ (

√
n− 1) nodes

in a network of n nodes.
Kelips does not define an explicit mapping of a given

key to its responsible node. Kelips replicates key/value pairs
among all nodes within a key’s group and a lookup termi-
nates whenever it reaches a node storing the corresponding
key/value pair. Lookups for non-existent keys have higher
latency than lookups that do have values stored under the
keys as lookups cannot terminate efficiently by reaching their
responsible nodes. For this reason, the variant of Kelips in this
paper defines lookups only for IDs of node that are currently
in the network. The originating node executes a lookup for a
key by asking a contact in the key’s group for target key’s node
ID, and then (iteratively) contacting that node. If that fails, the
originator tries routing the lookup through other contacts for
that group, and then through randomly chosen routing table
entries. In a static network, a Kelips lookup should take two
hops.

Nodes gossip periodically every tgossip seconds. A node
chooses one random contact and one node within the same
group to send a random list of rgroup nodes from its own group
and rcontact contact nodes. Routing table entries that have
not been refreshed for tout seconds expire. Nodes learn round
trip times (RTTs) and liveness information from each RPC,
and preferentially route lookups through low RTT contacts.
Table IV lists the parameters we use for Kelips. We use g =√

1000 ≈ 32 in our Kelips simulations with n = 1000 nodes.

D. Kademlia

Kademlia structures its ID space as a tree. The distance
between two keys in ID space is their exclusive or, interpreted
as an integer. The k nodes whose IDs are closest to a key
y store a replica of y. A node’s routing table keeps log2(n)
buckets that each stores up to k node IDs sharing the same
binary prefix of a certain length.

Parameter Range
Nodes per entry k 2 – 32
Parallel lookups α 1 – 32
Number of IDs returned ntell 2 – 32
Stabilization interval tstab 4 – 19 min

TABLE V

KADEMLIA PARAMETERS

Parameter Range
Slices nslices 3,5,8
Units nunits 3,5,8
Ping/Aggregation interval tstab 4 sec – 64 sec

TABLE VI

ONEHOP PARAMETERS

Kademlia performs iterative lookups: a node x starts a
lookup for key y by sending parallel lookup RPCs to the
α nodes in x’s routing table whose IDs are closest to y.
A node replies to a lookup RPC by sending back a list
of the ntell nodes it believes are closest to y in ID space.
Node x always tries to keep α outstanding RPCs. A lookup
terminates when some node replies with key y, or until the
last k nodes whose IDs are closest to y did not return any
new node ID closer to y. Like Kelips, Kademlia also does
not have an explicit mapping of a key to its responsible node,
therefore terminating lookups for non-existent keys requires
extra communication with the last k nodes. For this reason,
we also use node IDs as lookup keys in Kademlia experiments
and the last step in a lookup is an RPC to the target node.
Our Kademlia implementation favors proximate nodes. With
each lookup RPC, a node learns RTT information for existing
routing neighbors or previously unknown nodes to be stored
in its routing bucket. A node periodically (tstab) examines all
of its routing buckets and performs a lookup for each bucket’s
binary prefix if there has not been a lookup through it since
the last stabilization. Kademlia’s stabilization only ensures that
at least one entry in each bucket was alive in the past tstab

seconds, while stabilization in Tapestry (Chord) ensures all
routing entries were alive in the past tstab (tfinger) seconds.
Table V summarizes the parameters varied in our Kademlia
simulations.

E. OneHop

In OneHop, a node knows about every other node in the
network in order to maintain a lookup hop-count of one,
therefore there is no parameter determining how much state
a node keeps. Similar to Chord, OneHop [10] assigns a
key to its successor node on the ID circle using consistent
hashing [17]. The ID space is divided into nslice slices
and each slice is further divided into nunit units. Each unit
and slice has a corresponding leader. OneHop pro-actively
disseminates information regarding all join and crash events
to all nodes in the system through the hierarchy of slice
leaders and unit leaders. A node periodically (tstab) pings its
successor and predecessor and notifies its slice leader of the
death of successor/predecessor. A newly joined node sends
a live notification event to its slice leader. A slice leader



aggregates notifications within its slice and periodically (tstab)
informs all other slice leaders about notifications since the last
update. A slice leader disseminates notifications from within
its slice and from other slices to each unit leader in its own
slice. Notifications are further propagated to all nodes within
a unit through piggy-backing on each node’s ping messages.
Table VI summarizes the OneHop parameters varied.

Table VII summarizes the correspondence between design
choices and parameters for all the protocols used in this paper.

IV. EXPERIMENTAL METHODOLOGY

We implemented the five DHTs in a discrete-event packet
level simulator, p2psim. The simulated network, unless oth-
erwise noted, consists of 1024 nodes with a pairwise latency
matrix derived from measuring the inter-node latencies of 1024
DNS servers using the King method [19]. The median round-
trip delay between node pairs is 156 ms and the average is
178 ms. Since each lookup for a random key must terminate
at a specific, random node in the network, the median latency
of the topology serves as a lower bound for the median
DHT lookup latency. The simulator does not simulate link
transmission rate or queuing delays, because the experiments
involve only key lookups as opposed to data retrieval.

Each node alternately crashes and re-joins the network; the
interval between successive events for each node is exponen-
tially distributed with a mean of one hour. The choice of mean
session time is consistent with past studies of peer-to-peer
networks [20]. Each time a node joins, it uses a different
IP address and DHT identifier. We experimented with two
types of workloads: churn intensive and lookup intensive. In
the churn intensive workload, each node issues lookups for
random keys at intervals exponentially distributed with a mean
of 600 seconds. In the lookup intensive workload, the lookup
interval mean is 9 seconds. Unless otherwise noted, all figures
are for simulations done in the churn intensive workload. Each
simulation runs for six hours of simulated time; statistics are
collected only during the second half of the simulation.

For all the graphs below, the x-axis shows the total number
of bytes sent by all nodes divided by the sum of the amounts
of time that the nodes were up. That is, the x-axis shows the
average bytes per second sent by live nodes. This includes all
messages sent by nodes, such as lookup, join and routing table
maintenance traffic. The size in bytes of a message is counted
as 20 bytes (for packet overhead) plus 4 bytes for each IP
address or node identifier mentioned in the message. The y-
axis indicates lookup performance either in median lookup
latency or failure rate.

V. RESULTS

We ran simulations of each protocol with all combinations
of the parameters enumerated in Section III. Figures 4 and 5
present the convex hulls of all five DHTs for failure rate and
latency, respectively. The convex hulls’ overall characteristics
are similar in the sense that both failure rate and lookup latency
decrease as the protocols consume more bandwidth. However,
at any fixed bandwidth cost, the best achievable failure rates
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Fig. 5. Overall convex hulls for median successful lookup latency
for all DHTs, under the churn intensive workload.

or latencies of different DHTs can differ significantly. For
example, at 10 bytes/node/s, OneHop achieves 160ms median
lookup latency and Kademlia achieves 450ms with the best
parameter settings.

The convex hulls in Figures 4 and 5 are essentially the
result of an exhaustive search for the best parameter values.
Even on a single protocol’s convex hull, the parameter values
that provide the most efficient latency/bandwidth or failure
rate/bandwidth tradeoff are different in different regions.

In a real deployment, the protocol designer or deployer
would have to tune the parameters manually to find the best
values, or settle for default values. Tables VIII and IX summa-
rize the importance of tuning each parameter of each protocol
with respect to failure rate and lookup latency, respectively.
The table lines are ranked most important to least important,
as judged by the area between the overall convex hull and
the parameter convex hull for the best parameter value (see
Section II-C). The area between hulls measures the relative
importance of parameters on average over a range of costs
(1 − 100 bytes/node/s). To make the effects of tuning a
particular parameter more concrete, we also examine the actual
performance range achieved by different parameter settings at
a specific bandwidth cost. In Tables VIII and IX, the best and



Design Choices Tapestry Chord Kademlia Kelips OneHop
Separation of lookup correctness
from performance - tsucc - - -
Amount of state b, nredun b k ncontact -
Freshness of state tstab tfinger tstab tgossip tstab

Lookup parallelism - - α, ntell - -
Learning new nodes from lookups - - yes - yes

TABLE VII

DESIGN CHOICES AND THEIR CORRESPONDING PARAMETERS.

Tapestry Chord Kelips Kademlia
param best worst param best worst param best worst param best worst

1 tstab 18s:0.005 1152s:0.079 tsucc 18s:0.002 288s:0.062 tgossip 10s:0.000 1152s:0.435 ntell 4:0.006 2:0.239
2 nredun 8:0.005 1:0.037 tfinger 144s:0.002 1152s:0.006 ncontact 8:0.000 32:0.006 k 2:0.006 32:0.052
3 nrepair 3:0.005 1:0.006 b 16:0.002 8:0.003 tout 360s:0.000 1800s:0.000 α 4:0.006 1:0.042
4 b 2:0.005 128:0.096 nsucc 8:0.002 32:0.003 rcontact 2:0.000 32:0.001 tstab 1152s:0.006 288s:0.199
5 rgroup 2:0.000 32:0.001

TABLE VIII

THE RELATIVE IMPORTANCE OF EACH PARAMETER ON A DHT’S FAILURE RATE VS. COST TRADEOFF.
Each protocol’s parameters are ranked most important to least important, as determined by the minimum area difference between any of
a parameter’s values and the overall convex hull (see Figure 3), for costs ranging between 1 and 100 bytes/node/s. To give intuition as
to how each parameter affects the failure rate, we pick an example bandwidth value (40 bytes/node/s) and in the best column show the
value for that parameter resulting in the lowest failure rate, followed by the lowest failure rate achieved at that bandwidth. Similarly, the

worst column shows the value for that parameter resulting in the highest failure rate, followed by the best failure rate achieved with
that value while tuning other parameters freely.

Tapestry Chord Kelips Kademlia
param best worst param best worst param best worst param best worst

1 b 32:181 128:199 b 32:186 2:226 tgossip 18s:185 1152s:667 ntell 8:247 32:519
2 tstab 144s:181 1152s:195 tfinger 72s:186 1152s:218 rcontact 32:185 2:192 α 16:247 1:383
3 nredun 4:181 1:190 tsucc 18s:186 288s:197 tout 720s:185 1800s:189 k 16:247 2:383
4 nrepair 5:181 1:186 nsucc 32:186 8:190 rgroup 2:185 32:186 tstab 1152s:247 288s:421
5 ncontact 16:185 2:278

TABLE IX

THE RELATIVE IMPORTANCE OF EACH PARAMETER ON A DHT’S LATENCY VS. COST TRADEOFF.
Shows the same results as Table VIII, but using median lookup latency (in ms) as the performance metric.

worst columns show the failure rates and latencies achieved at
an example bandwidth cost of 40 bytes/node/s, preceded by the
values of that parameter that achieve those performances while
setting other parameters to their best values. The data show
the significance of the effect of tuning a particular parameter
on the best failure rate and latency. For example, changing the
Chord base b does not affect failure rate much, while changing
b from 16 to 2 increases latency from 186 milliseconds to 226.

The following subsections explain the effect of tuning the
parameters and the implications for protocol design; Table I
summarizes the conclusions.

A. When To Use OneHop

Figures 4 and 5 show that OneHop has the best overall per-
formance, with a failure rate close to 0% and a median latency
of about 160 ms. The latter is close to the minimum possible
latency imposed by the underlying simulated network’s 156
ms median round trip time. A natural question is whether
OneHop is therefore the best DHT protocol. The answer lies
in the fact that OneHop’s per-node bandwidth consumption is
proportional to the churn rate and the number of nodes in the
network. This makes OneHop primarily attractive in small or
low-churn systems.

OneHop effectively has only one performance/cost tradeoff.
Figure 5 shows that OneHop has a minimum bandwidth

consumption at 7.5 bytes/node/s and it reaches reaches its
best performance soon thereafter. OneHop cannot consume
less bandwidth than this number because it always pro-actively
notifies all nodes of all events. Therefore, OneHop’s minimum
bandwidth consumption scales linearly with churn rate and the
size of the network. To demonstrate this property, we evaluated
OneHop in a network of 3000 nodes2 and show the results in
Figure 6.

Figure 6 shows that the OneHop’s minimum bandwidth
consumption (the leftmost point of the OneHop curve) has
a bandwidth cost of approximately 21 bytes/node/s for 3000-
node networks. The threefold increase in the number of nodes
triples the total number of join/leave events that must be
delivered to every node in the network, causing OneHop to
triple its bandwidth consumption from 7.5 to 21 bytes/node/s.
For comparison, we also include Chord in Figure 6. The per-
node state and lookup hop count of Chord scales as O(log n)
and hence the convex hull of the 3000-node Chord network
is shifted from the one for the 1024-node network by only a
small amount towards the upper right. Therefore, for a 3000-
node network, OneHop is only preferable to Chord when the

2As we do not have King data for our 3000 node topology, we derive
our 3000-node pair-wise latencies from the distance between two random
points in a Euclidean square. The median latency is the same as that of our
1024-node network.
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Fig. 6. Overall convex hulls for Chord and OneHop in 1024- and
3000-node networks, under churn intensive workload.

deployment scenario allows a communication cost greater than
20 bytes per node per second.

Another aspect of OneHop’s performance is that slice and
unit leaders use about 8 to 10 times more network bandwidth
than the average. Chord, Kelips, Tapestry and Kademlia, on
the other hand, have more uniform bandwidth consumption:
the 95th-percentile node uses no more than twice the average
bandwidth. Therefore, if no node in the network can handle the
bandwidth required of slice or unit leaders, one would prefer
a symmetric protocol to OneHop.

Since OneHop’s parameters don’t allow significant tuning of
the performance/cost tradeoff, we do not include this protocol
in the rest of our analysis.

B. Separation of Lookup Correctness from Performance

Figure 4 shows that Chord provides a lower failure rate than
the other protocols when the amount of bandwidth is limited.
The following PVC parameter analysis explains why.

Table VIII shows that the most important Chord parameter,
in terms of failure rates, is the successor stabilization interval
(tsucc). This parameter governs how often a Chord node
checks that its successor is still alive, and thus the amount of
time it takes a Chord node to realize that its successor is dead
and should be replaced with the next live node in ID space.
The reason that tsucc has the largest effect on failure rate is that
the correctness of the Chord lookup protocol depends only on
successor pointers, and not on the rest of the Chord routing
table [7]. Thus it is enough to stabilize only the successors
frequently if a low lookup failure rate is required.

The other protocols do not have any similar entry in their
routing tables that is sufficient for correctness; all routing
information is equally important. Thus if one wishes a low
lookup failure rate, the entire routing table must be stabilized
frequently. The expense of this stabilization leads to a less
attractive failure rate/bandwidth tradeoff at low bandwidths.

C. Coping with Non-transitive Networks

The flexibility and network-independence of the PVC
framework also allows comparison of specific aspects of DHT
protocols under anomalous network conditions. For example,
DHT protocols typically have explicit provisions for handling
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Fig. 7. Overall convex hulls for lookup failure rates for Chord
and Tapestry under connected and non-transitive networks, under the
churn intensive workload.

node failure. These provisions usually handle network parti-
tions in a reasonable way: the nodes in each partition agree
with each other that they are alive, and agree that nodes in
the other partitions are dead. Network failures that are not
partitions are harder to handle, since they cause nodes to
disagree on which nodes are alive. For example, if node A
can reach B, and B can reach C, but A cannot reach C, then
they will probably disagree on how to divide the key ID space
among the nodes. A network that behaves in this manner is
said to be non-transitive.

In order to measure the effects of this kind of network fail-
ure on DHTs, we created a topology exhibiting non-transitivity
by discarding all packets between 5% of the node pairs in
our standard 1024-node topology, in a manner consistent with
the observed 4% of broken pairs [21] on PlanetLab [22]. The
existence of PlanetLab nodes that can communicate on only
one of Internet-1 and Internet-2, combined with nodes that
can communicate on both networks, produces non-transitive
connectivity between nodes. We ran both Chord and Tapestry
churn intensive experiments using this topology, and measured
the resulting failure rates of the protocols. Both protocols
employ recursive lookup, and thus nodes always communicate
with a relatively stable set of neighbors, eliminating the
problem that occurs in iterative routing (e.g., Kelips, Kademlia
and OneHop) in which a node hears about a next hop from
another node, but cannot communicate with that next hop.

We disable the standard join algorithms for both Chord
and Tapestry in these tests, and replace them with an oracle
algorithm that immediately and correctly initializes the state of
all nodes in the network whenever a new node joins. Without
this modification, nodes often fail to join at all in a non-
transitive network. Our goal is to start by investigating the
effect of non-transitivity on lookups, leaving the effect on
join for future work. This modification changes the bandwidth
consumption of the protocols, so these results are not directly
comparable to Figure 4.

Figure 7 shows the effect of non-transitivity on the failure
rates of Tapestry and Chord. Table X shows the parameter
rankings and the performance range of different parameter



Tapestry Chord
param best worst param best worst

1 tstab 18s:0.013 1152s:0.075 tsucc 18s:0.029 288s:0.048
2 b 16:0.013 2:0.024 tfinger 18s:0.029 1152s:0.031
3 nredun 4:0.013 1:0.023 nsucc 32:0.029 8:0.031
4 nrepair 1:0.013 10:0.014 b 2:0.029 128:0.035

TABLE X

THE RELATIVE IMPORTANCE OF CHORD/TAPESTRY PARAMETERS

ON FAILURE RATE VS. COST TRADEOFF, NON-TRANSITIVE.
The best and worst parameter settings are for a fixed bandwidth

budget of 80 bytes/node/s; at this cost most of the failures are due
to network non-transitivity rather than churn.

settings under the non-transitive network. Figure 7 shows that
Chord’s failure rate increases more than Tapestry’s with non-
transitivity; we can use PVC parameter analysis to explain
this behavior. Recall that, for the fully-connected network
(see Table VIII), base was the least important parameter for
Tapestry, in terms of failure rate. However, Table X shows that
for the non-transitive network, base becomes a more important
parameter, ranking second behind stabilization interval (which
is still necessary to cope with churn). For Chord, however,
base remains an unimportant parameter.

We can explain this phenomenon by examining the way in
which the two protocols enforce the structure of their routing
tables. The Chord lookup algorithm assumes that the ring
structure of the network is correct. If a Chord node n1 cannot
talk to its correct successor n2 but can talk to the next node
n3, then n1 may return n3 for lookups that really should have
found n2. This error can arise if network connectivity is broken
between even a single node pair.

Tapestry’s surrogate routing, on the other hand, allows for a
degree of leniency during the last few hops of routing. Strict
progress according to the prefix-matching distance metric is
not well defined once the lookup reaches a node with the
largest matching prefix in the network. This means that even
if the most direct path to the owner of a key is broken due
to non-transitivity, surrogate routing may find another, more
circuitous, path to the owner. This option is not available in
Chord’s strict linked-list structure, which only allows keys to
be approached from one direction around the ring. Tapestry
does suffer some failures, however. If a lookup reaches a node
that knows of no other nodes matching a prefix of the same
size with the key as itself, it will declare itself the owner,
despite the existence of an unreachable owner somewhere else
in the network. A bigger base results in more nodes matching
the key with the same largest matching prefix and hence gives
more opportunity to surrogate routing to route around broken
network connectivity.

In summary, while existing DHT designs are not specifically
provisioned to cope with non-transitivity, some protocols are
better at handling it than others. Future techniques to cir-
cumvent broken connectivity may be adapted from existing
algorithms.

D. Extra State Is Better than Faster Stabilization

Table IX shows the relative importance of each protocol
parameter for lookup latency. For both Tapestry and Chord,
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Fig. 8. Chord, under the churn intensive workload. Each line traces
the convex hull of all experiments with a fixed base b value while
varying all other parameters.
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Fig. 9. Kelips, under the churn intensive workload. Each line traces
the convex hull of all experiments with a fixed ncontact value while
varying all other parameters.

base (b) is the parameter whose value most needs to be tuned.
Figure 8 shows the Chord parameter convex hulls for different
base values. At the left side of the graph, where bandwidth
consumption is small, smaller bases should be used to reduce
stabilization communication cost. When more bandwidth can
be consumed, larger bases lower the latency by decreasing the
lookup hop-count.

A protocol could try to lower latency by stabilizing faster,
rather than by increasing routing table size via the base
parameter. Faster stabilization should decrease the likelihood
of lookup timeouts. Tapestry and Chord would stabilize faster
by decreasing the tstab and tfinger parameters, respectively.
The high importance rank of b in Table IX suggests that this
approach would not be as efficient as increasing base. With a
churn rate of 1 hour mean node lifetime, stabilizing to check
neighbor liveness every 72s or 144s is sufficient to achieve a
low lookup timeout probability for both Tapestry and Chord.
Stabilizing faster to use additional bandwidth provides little
extra benefit.

The Kelips parameter that controls the amount of allowed
per-node state, ncontact, does not appear to be an important
parameter. Figure 9 shows the parameter convex hulls for



different values of ncontact in Kelips. Large values of ncontact

(i.e., ncontact > 16) approach the overall convex hull per-
formance, and thus tuning ncontact (once a reasonable value
has been chosen for some cost) affects the performance/cost
tradeoff very little. This is because ncontact only determines
the amount of allowed state and the actual amount of state
acquired by each node is determined by how fast nodes gossip
(tgossip) which is the most important parameter in Kelips.

Figure 9 shows that maximizing the amount of allowed state
(ncontact = 32) achieves the best latency/cost tradeoff over the
entire cost range for Kelips. In contrast, Figure 8 shows that
one needs to tune the amount of allowed state by varying b in
Chord to approach the overall hull. This difference between
Kelips and Chord/Tapestry is due to differences in their routing
structure. In Chord/Tapestry, base (b) not only determines the
number of neighbors a node keeps, but also the part of the
ID space in which these neighbors must lie. In contrast, the
number of contacts a Kelips node keeps for each foreign group
determines only the amount of allowed state, and not the ID
space distribution of this state. Hence, it is always beneficial
to allow as many contacts for each foreign group as possible
as a particular contact is no more or less important than others.

Kelips’ routing structure is flexible enough for each node
to obtain complete state, therefore it achieves low latency
comparable to OneHop with sufficient bandwidth consumption
(Figure 5). However, unlike Chord/Tapestry, Kelips’ routing
structure is not flexible enough to allow routing state less than√

n + (
√

n − 1) as a node needs to keep
√

n state for all
nodes within a group and at least

√
n − 1 contacts, one for

each foreign group. If the per-node routing state is less than
this required minimum, Kelips’ lookups have to go through
randomly chosen nodes, resulting in significantly increased
latencies. For this reason, Kelips’ lookup latency is more than
Chord’s at low bandwidth in Figure 5.

E. Parallel Lookup Is More Efficient than Stabilization

Kademlia has the choice of using bandwidth for either
stabilization or parallel lookups. Both approaches reduce the
effect of timeouts: stabilization by eliminating stale routing
table entries, and parallel lookups by overlapping activity on
some paths with timeouts on others.

Table IX shows that stabilization is an inefficient way to
reduce Kademlia’s latency: the best value for tstab is always
the maximum stabilization interval. ntell and α, which control
the degree of lookup parallelism, are the most important
parameters for latency. Larger values of α keep more lookups
in flight, which decreases the likelihood that all progress
is blocked by a timeout. Larger values of ntell cause each
lookup step to return more potential next hops and thus cause
more opportunities for future parallelism. Thus, we conclude
that parallel lookups reduce latency more efficiently than
stabilization, under the churn intensive workload.

F. Learning from Lookups Can Replace Stabilization

Table VIII shows that Kademlia’s tstab parameter is no more
effective at reducing failures than at reducing latency; again,

Kademlia (no learn)
param best worst

1 tstab 288s:0.036 1152s:0.122
2 α 4:0.036 1:0.096
3 ntell 4:0.036 2:0.474
4 k 2:0.036 32:0.146

TABLE XI

THE RELATIVE IMPORTANCE OF KADEMLIA’S PARAMETERS ON

FAILURE RATE VS. COST TRADEOFF, WITH LEARNING DISABLED.
The best and worst parameter settings are for a fixed bandwidth
budge of 80 bytes/node/s, as Kademlia without learning needs

much more bandwidth to attain low failure rates.
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Fig. 10. Overall convex hulls for median successful lookup latency
for all DHTs, under the lookup intensive workload.

the most efficient setting is the maximum stabilization interval.
This suggests that Kademlia obtains information about new
nodes through ways other than stabilization. Indeed, Kademlia
relies on lookup traffic to learn about new neighbors: a node
learns about up to ntell new neighbors from each lookup hop.
This turns out to be a more efficient way to keep routing tables
up-to-date than explicit stabilization. For comparison, Table XI
includes results from Kademlia with learning disabled. With
no learning, tuning the stabilization interval is more important,
and a faster stabilization rate is required for the lower lookup
failures.

G. Effect of a Lookup-intensive Workload

The lookup intensive workload involves each node issuing
a lookup request every 9 seconds, almost 67 times the rate of
the churn intensive workload used in the preceding sections.
As a result, the lookup traffic dominates the total bandwidth
consumption. Figure 10 shows the overall latency convex hulls
of all protocols under the lookup intensive workload.

PVC parameter analysis shows a decrease in the importance
of tuning the Tapestry/Chord base parameter (b) with a lookup
intensive workload. A large base (32 or 64) is the best
for the lookup intensive workload under a wide range of
bandwidth costs, since it reduces the number of lookup hops to
approximately 2.8 one-way hops. Fewer hops translate into a
large bandwidth decrease, given the large percentage of lookup
traffic. For bases larger than 64, there is little reduction to
the already-low average lookup hop-count. Therefore, latency
reduction due to decreasing the number of timeouts becomes



relatively more important, especially because the amount of
stabilization traffic can be much less than the amount of lookup
traffic. As a result, for both Chord and Tapestry, tstab becomes
the most important parameter to tune.

For Kademlia, α becomes the most important parameter to
tune. Furthermore, a smaller α of 2 obtains the best tradeoff in
the lookup intensive workload, as opposed to the larger α of 8
that optimizes latency for the churn intensive workload. Since
Kademlia’s stabilization process does not actively check the
liveness of each routing table entry, stabilization is ineffective
at reducing timeouts during lookups. Therefore, to achieve
low lookup latency, some amount of lookup parallelism (i.e.,
α > 1) is still needed. However, as lookup traffic dominates
in the lookup intensive workload, lookup parallelism is quite
expensive as it multiplies the already large amounts of lookup
traffic. This partially explains why, in Figure 10, the overall
convex hull of Kademlia suffers more from the lookup inten-
sive workload than the other protocols.

VI. RELATED WORK

This paper builds on previous DHT studies by explicitly
accounting for the bandwidth consumed to achieve a certain
lookup latency and providing a detailed comparison of mul-
tiple protocols using PVC. The comparison using PVC sheds
light on which protocol features and parameters are important
for achieving low latency under high churn.

Many existing DHT protocol proposals include performance
evaluations [7]–[11], [23]. In general these evaluations have
focused on hop-count and latency without churn, or the ability
to maintain routing table correctness in the face of churn, but
have rarely examined lookup performance in the face of churn.
Similarly, most design studies explore tradeoffs in the context
of static networks [1], [13], [24].

Liben-Nowell et al. [2] give a theoretical analysis of Chord
in a network with churn. The concept of half-life is introduced
to measure the rate of membership changes. It is shown that
Ω(log n) stabilization notifications are required per half-life
to ensure efficient lookup with O(log n) hops. The analysis
focuses only on the asymptotic communication cost due to
Chord stabilization traffic, whereas our study explores a much
broader set of parameters and protocols.

Rhea et al. [3] present Bamboo, a DHT protocol designed
to handle networks with high churn efficiently and gracefully.
Bamboo uses active probing with accurate TCP-like timeouts
and specialized routing table stabilization strategies to perform
well under churn. In a similar vein, Castro et al. [4] describe
how they optimize their Pastry implementation, MSPastry, to
handle consistent routing under churn with low overhead. Like
these papers, our study is careful to separate detection of a
failed node from recovering from failures during lookup.

Rhea et al. compare Bamboo against Pastry and Chord, but
do not explore the parameter spaces of those protocols; our
study explores a wider range of protocols and demonstrates
that parameter tuning can have a large effect on performance.
On the other hand, our simulator does not allow us to model

bandwidth congestion, which proved to be an important factor
in the comparisons done by Rhea et al.

Lam and Liu [5] present join and recovery algorithms for
a hypercube-based DHT, and show through experimentation
that their protocol gracefully handles both massive changes
in network size and various rates of churn. While our work
focuses on lookup latency and correctness, Lam and Liu
explore K-consistency, a much stronger notion of network
consistency that captures whether or not the network has
knowledge of many alternate paths between nodes.

VII. CONCLUSIONS

Evaluating DHT protocols in the presence of churn is a
challenge. Methodologies developed for static networks can
be misleading, since they don’t account for the resources
consumed to obtain low latency. This paper introduces PVC, a
performance vs. cost framework that explicitly accounts for the
network bandwidth a DHT consumes to achieve better lookup
performance.

DHTs incorporate many features to improve lookup perfor-
mance at extra communication cost in the face of churn. It is
misleading to evaluate the performance benefits of an individ-
ual design choice alone because other competing choices can
be more efficient at using bandwidth. PVC presents designers
with a methodology to determine the relative importance of
tuning different protocol parameters under different workloads
and network conditions. As parameters often control the extent
to which a given protocol feature is enabled, PVC allows
designers to judge whether a protocol feature is more efficient
at using additional bandwidth than others via the analysis of
the corresponding protocol parameters.

Using PVC and simulations of a set of DHT protocols
with a wide range of design choices, we obtained a number
of insights about protocol design, which are summarized in
Table I. For example, PVC shows that to most efficiently use
additional bandwidth, a DHT node needs to expand its routing
table. Learning opportunistically can replace stabilization for
acquiring new state.

We hope that other designers will find PVC useful in
designing and evaluating new DHT features and protocols.
The source code and simulation scenarios for this paper are
available online at:
http://pdos.lcs.mit.edu/p2psim.
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