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Abstract—We investigate the structure of addresses contained
in IPv4 traffic—specifically, the structural characteristics of des-
tination IP addresses seen on Internet links, considered as a subset
of the address space. These characteristics have implications for
algorithms that deal with IP address aggregates, such as routing
lookups and aggregate-based congestion control. Several example
address structures are well modeled by multifractal Cantor-like
sets with two parameters. This model may be useful for simula-
tions where realistic IP addresses are preferred. We also develop
concise characterizations of address structures, including active ag-
gregate counts and discriminating prefixes. Our structural charac-
terizations are stable over short time scales at a given site, and
different sites have visibly different characterizations, so that the
characterizations make useful “fingerprints” of the traffic seen at
a site. Also, changing traffic conditions, such as worm propagation,
significantly alter these fingerprints.

Index Terms—Address space, address structures, multifractals,
network measurement.

I. INTRODUCTION

THE behavior of individual flows—single connections or
streams of packets between the same source and destina-

tion—has received extensive analysis for a number of years.
However, as the Internet continues to expand in speed and size,
the gulf between the behavior of flows and the behavior of large
aggregates of flows grows ever wider. Studies of aggregate
traffic have focused on questions of behavior at a particular
granularity: for example, correlations in packet arrivals seen
en masse on a link [1], patterns of backbone traffic when
partitioned by directionality, transport protocol, and application
[2], [3] or viewed at /8, /16 and /24 prefix granularities [4],
or the overall distributions of individual connection charac-
teristics [5], [6]. These studies have made significant progress
in understanding the structure of specific types of aggregates.
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In this paper, however, we focus on how behavior changes as
aggregation increases. There is clearly a world of difference
between an individual TCP connection and a gigabit traffic
conglomerate headed from one city to another, but aside from
basic statistical multiplexing models, we understand little of
how behavior changes as we go from one to another.

We tackle a relatively modest question, one of the simplest
conglomerate properties we could investigate: What is the struc-
ture of addresses in IPv4 traffic? In particular, how are packets
distributed among a conglomerate’s component addresses, and
how do those addresses aggregate? The answers to these ques-
tions are relevant to many models of conglomerates, such as
models of how they are routed by the network, and it turns out
that addresses in IP traffic exhibit surprisingly rich structure.

We begin with descriptions of our methodology and data sets
(Sections III and IV). In particular, we motivate our widespread
use of destination-prefix aggregation, where two packets are in
the same -aggregate if their destination addresses share a -bit
prefix. We then examine factors contributing to the observed
distribution of packets per destination-prefix aggregate, which
has a heavy, Pareto-like tail (Section V). This is related to the
well-known “mice and elephants” phenomenon, whereby most
flows are small, but some flows contain vastly more packets than
the average. By applying different types of random shuffling,
we show that address structure—the arrangement of active ad-
dresses in the address space—has a greater effect on aggregate
packet counts than the arrangement of packets into flows, at least
for medium-to-large aggregates such as /16s. This motivates our
investigation of address structure itself.

Under visual examination, the set of addresses in a trace ap-
pears broadly self-similar: some structural features reappear at
different scales. (For example, see Fig. 1.) We therefore explore
fractal address models in Section VI. It turns out that our ex-
ample address structures are well-described by a two-parameter
multifractal model. This parsimonious model captures much,
though not all, of the address structure observed in our traces,
and provides promise both for synthesizing realistic address
structures for simulation, and as an analytic framework for fur-
ther study. This model is the paper’s core result.

In Section VII, we further explore our data sets and our model
using concepts and analytic tools designed for analyzing address
structures. We finish in Section VIII with a look at how address
structure properties vary: over time, from site to site, and for dif-
ferent types of traffic. We find that the structure of aggregates
seen at a site is steady over time, that different sites exhibit dis-
tinctly different address structures, and that broadly distributed
traffic patterns such as the Code Red 1 and 2 worms of July and
August 2001 have, not surprisingly, their own striking signature.

An Appendix presents supplementary graphs using additional
data sets and parameters.
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Fig. 1. The address structure of data set U1, with two successive 32� magni-
fications. We draw a box for every nonempty address prefix; the Y axis is prefix
length. A single address would generate a stack of 33 boxes, each half the width
of the one below. The topmost boxes are extremely thin!

II. RELATED WORK

We are not aware of similar previous work on characteristics
of IP address structure. More broadly, much effort has gone into
modeling the structures of traffic bursts in the Internet; like ad-
dress structure, measured traffic appears to be self-similar [1],
[7] and exhibit multifractal characteristics [8]. Krishnamurthy
and Wang [9] have previously investigated the properties of
client addresses aggregated according to BGP routing prefixes.
Their results indicate that these aggregates have a heavy-tailed
distribution, like our destination-prefix aggregates. Researchers
have begun investigating destination-prefix aggregate properties
for aggregate congestion control [10].

III. DESTINATION-PREFIX AGGREGATION

We begin with the fundamental definition of what makes up
a traffic aggregate. In this paper, two packets are in the same
aggregate iff the first bits of their destination addresses are
equal. Different aggregate sizes use different . Destination ad-
dress prefix makes a good aggregate definition for several rea-
sons.

• IP addresses were built for prefix aggregation. The initial
IP specification divided addresses into classes based on 1-
to 4-bit address prefixes. Depending on class, an 8-, 16-,

or 24-bit network prefix determined where a packet should
be routed [11]. Classless inter-domain routing (CIDR)
[12], which replaced this system as address blocks became
scarce, kept the notion of identifying networks by address
prefixes, but allowed those prefixes to have any length.

• Likewise, allocation proceeds in prefix-based blocks.
IANA delegates short prefixes (which contain many
addresses) to other organizations, which then delegate
sub-prefixes to their customers, and so forth. This prop-
erty can relate other aggregate definitions—geographic
location or round-trip time, for instance—back to address
prefixes.

• IP routers make their routing decisions based on des-
tination address prefix—a longest-prefix-match lookup
on all routes keyed by the packet’s destination ad-
dress. Therefore, the characteristics of observed des-
tination-prefix-based aggregates intimately affect the
performance of route cache strategies. Other router algo-
rithms that work on aggregates, such as aggregate-based
congestion control [10], often define aggregates by des-
tination prefix, since routers already use them for route
lookup.

One could usefully define aggregates in many other ways, such
as by destination geographic area or application protocol, but
we only consider aggregates defined by destination address pre-
fixes.

CIDR notation is used for prefixes and aggregates. Given an
IP address and prefix length , with , “ ” refers
to the -bit prefix of or, equivalently, the aggregate consisting
of all addresses sharing that prefix. An aggregate with prefix
length is called a -aggregate, or, sometimes, a “/ ”. A

-aggregate contains 2 addresses, so aggregates with short
prefix lengths contain more addresses; the single 0-aggregate
contains all addresses and a 32-aggregate is equivalent to a
single address. We use the terms “short” and “long” when
referring to prefixes, and “small” and “large” when referring to
aggregates; short prefixes correspond to large aggregates, and
long prefixes to small aggregates.

IV. DATA SETS

Our packet traces originate at locations that generally see a
lot of traffic aggregation, including access links to universities
(U1 and U2) and busy Web sites (W1), ISP routers with peering,
backbone, and client links (A1 and A2), and links connecting
large metropolitan regions with a major ISP backbone (R1 and
R2). The traces date from between 1998 and 2001. Their du-
rations range from 1 to 4 hours, and their packet counts range
from 1.4 million to 101 million. We write for the number of
distinct destination addresses in a trace; it ranges from 70 000
to 160 000. Some traces were pseudo-randomly sampled at the
packet level. Fig. 2 presents high-level characteristics of these
data sets. We believe that traces from sites that see less aggrega-
tion, or that draw from a narrower user base, might exhibit dif-
ferent characteristics. Although the properties visible at these lo-
cations will have changed over time, a set of external addresses
observed at a national laboratory in 2005 demonstrates struc-
tural characteristics not far from those observed at that labora-
tory in 2001 (Section VIII-C).
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Fig. 2. Characteristics of our traces.

The addresses in many of our traces have been anonymized
while preserving prefix relationships. (This kind of anonymiza-
tion seems to have been introduced by the tcpdpriv program’s

option [13].) A prefix-preserving anonymization func-
tion maintains the property that for any addresses and and
prefix length , iff . All our anal-
ysis methodologies are indifferent to this anonymization.

All of our traces are omnidirectional, meaning that they
contain all packets passing by the trace location, regardless of
whether the packets were heading “towards” or “away from”
the trace point. We experimented with algorithms to extract
likely unidirectional traces from omnidirectional ones. On
seeing a packet with source address and destination address
, one can assume, modulo spoofing and misrouting, that is

on one side of the link and is on the other. Running trace R1
through a conservative algorithm based on this insight yielded
three address sets: 12% of addresses were “internal”, 68%
were “external”, and 21% could not be classified. (The large
number of unclassifiable addresses is partially due to R1’s
1-in-256 sampling, which reduces the algorithm’s efficacy.)
The structural metrics (see Section VIII) of the whole trace
follow those of the “external” addresses, probably because
there are relatively few “internal” addresses.

Given omnidirectional traces at locations with symmetric
routing, we would expect the set of source addresses in the
trace to roughly equal the set of destination addresses. This
holds true for some, but not all, of our traces. For example, 93%
of the addresses in trace U1 appear both as source addresses
and as destination addresses, while just 17% of the addresses
in trace A1 occur both as sources and as destinations.

It can be useful to develop a general intuition about how
address structures look before considering their mathematical
properties. Fig. 1 presents one simple visualization of a sample
address structure, namely the destination addresses present in
trace U1. We draw a box for each aggregate containing at least
one address present in the trace. Regions of the address space
fall into three visually distinct categories: sparsely populated,
such as class A (0.0.0.0 to 128.0.0.0); densely populated, such
as class C (192.0.0.0 to 224.0.0.0); and empty, generally ad-
dress space reserved by the IETF (such as 240.0.0.0 to 255.255.
255.255). The address structure appears broadly self-similar, in
that structural features recur at different scales. For instance,
compare the bottom diagram (195.128.0.0 to 195.192.0.0) with
class A in the top diagram (0.0.0.0 to 128.0.0.0). Other traces
look generally similar when graphed in this way.

V. IMPORTANCE OF ADDRESS STRUCTURE

A packet count distribution graph shows how the number of
packets per group—TCP flow, destination address, or destina-

tion-prefix aggregate—varies over the set of all groups. These
distributions are significant for congestion control and fairness
applications, among others. We are particularly interested in the
distributions’ rough shape—for example, normally distributed,
uniform random, or heavy-tailed. Examining these distributions
demonstrates the importance of address structure. We see that all
three distributions are heavy-tailed, and that address structure is
the strongest factor affecting the packet count distribution for
medium-sized aggregates.

Relevant characteristics of R1, the trace used throughout this
section, are as follows.

Trace duration 1 hour
Sampling ratio 1/256
Number of packets 1 476 378
Number of non-TCP/UDP packets 36 445
Number of TCP/UDP flows 680 663
Number of active addresses 168 318
Number of active 16-aggregates 5785

A. Packet Count Distributions

A random variable follows a heavy-tailed distribution if it
is about as likely to exceed a large value as it is to exceed any
larger value [14]:

for all

Thus, the distribution’s tail—the complement of its distribution
function—maintains meaningful probability, no matter how far
out that tail is measured. Of course, in any finite distribution
the tail is truncated eventually. Heavy-tailed distributions have
been frequently observed in natural and artificial phenomena,
including the Internet [15], [16].1 The simplest heavy-tailed dis-
tribution is the power-law distribution, where
as for some .

Log-log complementary CDF graphs form a well-known test
for heavy-tailed distributions. These plots show, for a given ,
the fraction of entities that have weight or more, with both axes
in log scale. Power-law distributions appear as straight lines on
these graphs for sufficiently large .

Fig. 3 presents a log-log complementary CDF of the packet
counts of TCP/UDP flows, addresses, and 16-aggregates in the
R1 data set.2 The graph’s X axis marks the number of packets
attributed to an entity—flow, address, or aggregate. (The largest
entities in the trace are visible as the endpoints of the lines.
The largest flow in the trace contains 3727 sampled packets,

1In some cases these observations may be biased by measurement method-
ology [17].

2Appendix Fig. 18 shows similar graphs for other data sets.
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Fig. 3. Log-log complementary CDF of packet counts for R1 flows, addresses,
and 16-aggregates. All are consistent with power-law distributions. The fit lines
have slopes �1.46, �1.16, and �1.13, respectively.

the largest destination address has 27 020 sampled packets, and
the largest 16-aggregate has 187 227 sampled packets.) All three
distributions appear to have power law tails. That is, the chance
that an entity has weight greater than is proportional to
with ; here, is approximately 1.46 for flows, 1.16
for addresses, and 1.13 for 16-aggregates. These values were
calculated by least-squares fit to the upper 10% of the distribu-
tions’ tails, less the last 5 data points. Other traces have similar
packet count distributions, although some have lighter tails.

Prior work has shown that Web flow weights follow a heavy-
tailed distribution [15], and 70% of R1’s packets, and 89% of its
flows, use ports 80 (http) or 443 (https). Thus, the heavy-tailed
nature of the TCP/UDP-flow packet count distribution comes
as no surprise. However, we might also have expected large
aggregates to appear less heavy-tailed than flows or addresses.
Each 16-aggregate can contain tens of thousands of flows, and
the sum of so many finite distributions would tend to converge,
however slowly, to a normal distribution. We see no signifi-
cant convergence in our data, however: the 16-aggregate packet
count distribution appears, if anything, more heavy-tailed than
the flow packet count distribution. Why might this be so?

B. Factors Affecting Aggregate Packet Counts

The number of packets in a particular address aggregate can
be analyzed as depending on three factors:

1) Address packet counts: How many packets are there per
destination address?

2) Address structure: How many active addresses are there per
aggregate? (We call a destination address active when its
packet count is at least one. Thus, our definition of address
structure does not differentiate between popular and un-
popular destinations.)

3) The correlation between these factors: Do addresses with
high packet counts tend to cluster together in the address
space? Or do they tend to spread out? Or neither?

We can empirically evaluate the relative importance of these
factors by altering each factor in turn, then comparing the re-
sulting aggregate packet count distributions with those of the
real data R1. To this end we transform the R1 data set in three
ways.

1) “Random counts”: This transformation replaces all address
packet counts in the data set with numbers drawn uniformly

Fig. 4. Complementary CDF of 16-aggregate packet counts for R1 with
random addresses, R1 with random address packet counts, R1 with permuted
address packet counts (but the same addresses), and R1 itself (line repeated
from Fig. 3).

from the interval [0, 17.54]. This destroys address packet
counts and correlation while preserving address structure.
(17.54 is twice R1’s mean address packet count.)

2) “Random addresses”: To alter address structure, we ran-
domly choose 168 318 addresses from the address space,
then assign R1’s address packet counts to those addresses.
This preserves the address packet count distribution while
destroying address structure and correlation.

3) “Permuted counts”: To destroy any correlation between the
two distributions while preserving the distributions them-
selves, we keep the original addresses, but randomly per-
mute their packet counts.

Per-address packet counts dominate the packet counts of
small aggregates. That is, for 24-aggregates and smaller, the
aggregate packet count distribution of “random addresses”
resembles that of the real data, while that of “random counts”
does not. This makes intuitive sense. A 30-aggregate, for ex-
ample, can contain at most four addresses, so address structure
and correlation can have minimal impact on 30-aggregate
packet counts.

For medium-to-large aggregates, however, the story is quite
different. Fig. 4 shows the results for 16-aggregates.3 All three
generated sets differ from the real data, but unlike “random
counts” and “permuted counts”, the “random addresses” line
differs significantly across the entire range of values. This un-
derlines the importance of address structure: for medium-to-
large aggregates, address structure has a greater effect on ag-
gregate packet counts than per-address packet counts. In order
to understand aggregate packet counts, we must understand how
addresses aggregate.

VI. MULTIFRACTAL MODEL

Fig. 1 shows that real address structures look broadly self-
similar: meaningful structure appears at all three magnification
levels. We now validate that intuition by presenting a multi-
fractal model for observed address structures. Although address
structures bottom out at prefix length 32, whereas true fractals
have structure down to infinitely small scales, this is still enough
depth to make fractal models potentially valuable.

3Appendix Fig. 19 shows similar graphs for 8- and 24-aggregates.
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Fig. 5. n as a function of prefix length for several traces, with a least-squares
fit line for R1’s 4 � p � 14 region (fit slope 0.79).

A. Fractal Dimension

An address structure can be viewed as a subset of the unit
interval , where the subinterval
corresponds to address . Considered this way, address structure
might resemble a Cantor set-like fractal [18], [19]. The classic
Cantor set is created by repeatedly removing the open middle
third from each of a set of line segments, where the set is ini-
tialized with the unit interval [0,1]. The result is an uncountably
infinite set of points that nevertheless contains no continuous
interval. The Cantor set has topological dimension 0 (since it
consists of isolated points), but it is also a fractal—a set with in-
teresting structure at all scales—and has an intermediate fractal
dimension, namely 0.63. Like the Cantor set, address struc-
tures are sets of points with structure at many scales (although
unlike the Cantor set, they are finite). Considered this way, what
would be the dimension of our address structure?

The box-counting fractal dimension metric, or Kolmogorov
capacity, fits naturally with address structures and prefix aggre-
gation. If is the number of closed boxes of side length
required to cover some set, then the set’s box-counting dimen-
sion equals

The same measure may be obtained usinerg dyadic inter-
vals, which arise from repeated bisection of the unit interval.
A dyadic interval with length occupies
for and non-negative integers with , and thus corre-
sponds to a -aggregate in our address structure model. Given a
trace, let be the number of -aggregates that contain at least
one address present in the trace as a destination .
Any nonempty trace will have , since the single 0-aggre-
gate covers the entire address space, and is the number
of distinct destination addresses present in the trace. Further-
more, since each -aggregate contains and is covered by exactly
two disjoint -aggregates, we know that

. Box-counting dimension may then be evaluated as

This definition of course bounds between 0 and 1.
If address structures were fractal, would appear as a

straight line with slope when plotted as a function of . We

would actually expect to see startup effects for low (higher
slope than the true dimension) and sampling effects for high

(lower slope than the true dimension, because there’s not
enough data to fill out the fractal). Fig. 5 shows a log plot of
as a function of ; we find that, for a reasonable middle region

, curves do appear linear on a log-scale plot. For
R1, a least-squares fit to this region gives a line with slope 0.79.
Thus, R1’s nominal fractal dimension is .

B. Multifractality

Adaptations of the Cantor set construction can generate ad-
dress structures with any fractal dimension. The relative size
of the portion removed from each line segment determines the
dimension of the resulting set:

For the canonical Cantor set, and .
Any address interval containing a point of the resulting set could
represent an active address.

Such Cantor-like sets can capture the global scaling behavior
of aggregate counts. However, real address structure is more
complicated than what they can predict. Cantor-like sets have
the same local scaling behavior everywhere in the address space,
modulo sampling effects. Traces, on the other hand, populate
portions of the address space quite differently, as can be seen
in Fig. 1. This results in different local scaling behavior, where
points cluster more strongly in some regions than others—the
essence of multifractality.

To test if a data set is consistent with the properties of
multifractals, we use the Histogram Method to examine its
multifractal spectrum [19]. This method evaluates local scaling
exponents, which measure the approximate scaling behavior
near a given point in the structure. In a monofractal, local
scaling exponents will all approximate the fractal dimension,
but in a multifractal, they vary considerably. Let denote
the number of active addresses in the aggregate . Then
since address structures treat all active addresses identically,

, the “mass” or probability associated with , equals
. When , the local scaling exponent

is defined as follows:

To calculate a multifractal spectrum, first compute a histogram
of . That is, decide on a set of evenly sized histogram bins,
and for each bin , calculate , the number of aggregates
whose value lies within that bin. The multifractal spec-
trum plots versus the binned scaling expo-
nents.4 For multifractal data, this spectrum will collapse onto
a single curve for sufficiently large . Our data sets are domi-
nated by sampling effects for large , however, so we examine
medium instead. The solid line in Fig. 6 shows R1’s multi-
fractal spectrum at ; spectra at nearby prefixes are sim-
ilar. It covers a wide range of values. The dashed line corre-
sponds to an address structure sampled from a Cantor-like set

4Strictly speaking, the multifractal spectrum is continuous; this is a binned
approximation.
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with fractal dimension 0.79, the same as R1’s nominal fractal
dimension. 168 318 addresses were sampled, giving the set the
same number of addresses as R1. The full Cantor-like set has
a single fractal dimension, but this single dimension appears
cleanly only in the limit; at any individual aggregation level,
such as that used in Fig. 6, multiple scaling exponents are vis-
ible. Nevertheless, R1’s multifractal spectrum is significantly
wider than that of the Cantor-like set, indicating that R1 demon-
strates multifractal-like behavior.

C. Model

The original Cantor construction can be easily extended to
a multifractal Cantor measure [20], [21]. Begin by assigning
a unit of mass to the unit interval . As before, split the in-
terval into three parts where the middle part takes up a fraction

of the whole interval; call these parts , , and . Then
throw away the middle part , giving it none of the parent in-
terval’s mass. The other subintervals are assigned masses
and . Recursing on the nonempty subintervals
and generates four nonempty subintervals , , , and

with respective masses , , , and . Con-
tinuing the procedure defines a sequence of measures where

(each is 0, 1, or 2); these
measures converge weakly towards a limit measure . To create
an address structure from this measure, we choose addresses
where the probability of selecting address equals . If

, this replicates the Cantor construction. If
and differ, however, the measure is multifractal. Al-

though the set of mathematical points with nonzero mass equals
the original Cantor set, and has the same basic fractal dimension,
the measure’s unequal distribution of mass causes the sampled
set of addresses to exhibit a wide spectrum of local scaling be-
haviors.

We constructed another set of addresses, the “R1 Model”,
by generating 168 318 addresses according to a Cantor mea-
sure with basic fractal dimension and with

(chosen to fit the data). The dotted line on Fig. 6 shows
its multifractal spectrum.5 The measure is partially determin-
istic—the Cantor construction’s excluded middle means that
some addresses will never be chosen—but not entirely. Nev-
ertheless, several samples of the measure led to similar results.
The single parameter is sufficient to make the model match
real data fairly well at all scaling exponents.

We created similar models for several other traces, using
fractal dimensions and as follows:

R1 0.79 0.80 A2 0.80 0.70
U1 0.73 0.72 W1 0.83 0.75

Each trace’s fractal dimension was measured as the slope
of the least-squares fit line on a graph of versus for

. Each trace’s mass proportion was chosen so
that the model’s multifractal spectrum covered a similar range
as that of the trace. Fig. 7 shows the multifractal spectra for A2
and its model at .6

5Appendix Fig. 20 shows spectra for R1 and its model at p = 15, 17, and 18.
6Appendix Fig. 21 shows multifractal spectra at p = 16 for all data sets;

Appendix Fig. 22 compares the spectra for U1 and W1 to those for their models.

Fig. 6. Multifractal spectra for R1 and Cantor sets, p = 16.

Fig. 7. Multifractal spectra for A2 and its model, p = 16.

All of these models broadly match the real data’s multifractal
spectra. The trace spectra cover different ranges of scaling ex-
ponents, but modifying seems sufficient to capture this vari-
ation. In particular, raising increases the range of scaling
exponents on the spectrum, as one would expect. We also exper-
imented with fixing at our optimal guess and varying . As

rose above the measured dimension, the model’s fractal spec-
trum fragmented into more spikes; as it lowered below the mea-
sured dimension, the model’s spectrum smoothed out, but also
covered a narrower range of scaling exponents and fell below
the real spectrum.

D. Causes

Why might IP addresses appear to be multifractal? This area
needs more investigation, but there is an attractive, intuitive ex-
planation. Multifractals can be generated by a multiplicative
process or cascade that fragments a set into smaller compo-
nents recursively—for example, taking out the middle subin-
terval as in a Cantor set—while redistributing mass associated
with these components according to some rule—for example, a
higher probability of further populating the resulting left subin-
terval. This brings to mind the way IP addresses are allocated:
ICANN assigns big IP prefixes to the regional registrars, the reg-
istrars assign blocks to ISPs, who further assign sub-prefixes
to their customers, and so forth. For social and historical rea-
sons, many of these allocation policies may share a simple basic
rule—for example, left-to-right allocation. Together, these pro-
cesses would generate a cascade, and multifractal behavior.

The model presented above is by no means the only way to
generate a set of addresses consistent with multifractal behavior.
For example, one can repeatedly divide the unit interval in
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Fig. 8.  , aggregation ratios.

half, each time associating random variables, possibly with log-
normal or other nonuniform distribution, with the two halves.
Points would be chosen according to the resulting probability
distribution, which, unlike the multifractal Cantor measure de-
scribed above, assigns a nonzero probability to every address.
Preliminary experiments indicate that this kind of “random cas-
cade” can match the multifractal spectrum of real data, although
we had less success matching the metrics described below.

VII. METRICS

We have seen that a surprisingly simple model of address
structure captures the multifractal behavior of real data. Now,
we test that model against generic structural metrics that mea-
sure how addresses are aggregating. Our goal is to test whether
the multifractal model matches real data in simple summary
metrics with real-world relevance, in addition to the multifractal
spectrum. We introduce three metrics: active aggregate counts,
which measure where nontrivial aggregation takes place; dis-
criminating prefixes, which measure the separation between ag-
gregates; and aggregate population distributions, which show
how addresses are spread across aggregates.

A. Active Aggregate Counts ( and )

One measurement of how densely addresses are packed is
simply how many aggregates there are. A trace containing
10 000 distinct destination addresses might have a single active
16-aggregate, if the addresses were closely packed, or 10 000
different 16-aggregates, if they were maximally spread out. The
active aggregate counts , introduced in Section VI-A, capture
this notion by counting the number of active -aggregates for
every . For instance, is the number of active 16-aggregates:
the number of /16s that contain at least one active address. This
measure is relevant to the design of algorithms that keep track
of aggregates, since it shows how many aggregates there are on
average.

The ratio is often more convenient for
graphing than itself.7 Fig. 8 shows the values of for
R1, and our multifractal model tuned for R1; Fig. 9 shows A2
and the model for A2.8 drops vaguely linearly from 2 to 1,
corresponding to exponential growth in aggregate counts that
gradually flattens out as prefixes grow longer. ( always lies

7Nevertheless, Appendix Fig. 23 graphs of n for all data sets and models.
8Appendix Fig. 24 graphs of  for all data sets and models, and Appendix

Fig. 25 compares  for U1 and W1 to their models.

Fig. 9.  for A2 and its model.

between 1 and 2.) The models’ plots are smoother than the real
data for or so, but they do match in broad outline. For
example, note how the plots for A2 and its model dip lower
than those for R1 and its model at . The bumps in at

, , and are probably caused by traditional class-based
address allocation, still visible years after the introduction of
CIDR [22].

Some properties of trace locations may be inferred from
graphs of . For example, A2’s is lower than R1’s around

to , but higher for . This means that more of
A2’s aggregation takes place at long prefixes: active addresses
are closer to one another than in R1. We hypothesize that
A2’s location, at an ISP with both peering and customer links,
accounts for this; maybe A2’s direct customers have relatively
many closely packed active addresses.9

B. Discriminating Prefixes

Active aggregate counts measure address density, but cannot
always characterize address separation. An address might be the
only active address in its half of the address space, in which case
we would call it well-separated from other addresses, or it might
be part of a completely populated 16-aggregate. The and

metrics cannot always distinguish between cases where all
16-aggregates (say) are equally populated and cases where some
16-aggregates are fully populated and others are sparsely popu-
lated, meaning some addresses are more separated than others.
To measure address separation, we introduce a new metric, dis-
criminating prefixes.

The discriminating prefix of an active address is the prefix
length of the largest aggregate whose only active address is .
Thus, if the discriminating prefix of an address is 16, then it
is the only address in its containing 16-aggregate, but the con-
taining 15-aggregate pulls in at least one other active address.
Fig. 10 demonstrates this concept on an example set of 4-bit-
long addresses. If many addresses have discriminating prefix
less than 20, say, then active addresses are generally well sepa-
rated, and we would expect aggregates to contain small numbers
of active addresses.

9Our algorithm for identifying “internal” and “external” addresses in omni-
directional traces, which classified 79% of R1’s addresses, was able to classify
only 21% of A2’s addresses. This might indicate a complex conversation pat-
tern, such as high levels of communication among A2’s customers. Intuitively,
such a communication pattern might correlate with closely packed active ad-
dresses—for example, if several of A2’s customers were different campuses of
a single organization.
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Fig. 10. Discriminating prefix example with 4-bit addresses. The top boxes are
active addresses; lower boxes represent active aggregates, as in Fig. 1. Each
active address’s discriminating prefix is shown inside its box.

Fig. 11. CDF of address discriminating prefix counts � .

We turn discriminating prefixes into a metric by calculating
, the number of addresses that have discriminating prefix ,

for all . Since every address has exactly one dis-
criminating prefix, .

Fig. 11 graphs for R1, A2, and our R1 model.10 The traces’
discriminating prefixes range widely, indicating wide variability
in address separation. Discriminating prefixes get surprisingly
low: one R1 address has a discriminating prefix of 6 (since

), meaning that some active 6-aggregate contains ex-
actly one active address. (However, the majority of addresses
have discriminating prefix 26 or higher.) The model captures
this range in discriminating prefixes, although it does not create
discriminating prefixes as low as the real data. Simpler models,
such as random address assignment, sequential address assign-
ment, and a monofractal Cantor construction, create much nar-
rower ranges of discriminating prefixes.

C. Aggregate Population Distributions

Aggregate population distributions provide a more
fine-grained measurement of how addresses are aggregating
at a given prefix length. The population of an aggregate is
the number of active addresses contained in that aggregate;
in Section VI-B, we expressed this as . Given our expe-
rience with the other metrics, we would expect -aggregates
to exhibit a wide range of populations for short-to-medium .
Longer-prefix aggregates contain fewer addresses, so there is
not as much room for variability.

This expectation is confirmed by the data. Fig. 12 graphs 8-
and 16-aggregate population distributions for R1 and our R1
model on a log-log complementary CDF: for a given , the Y
axis measures the fraction of aggregates with population at least

. This is the same kind of graph as the aggregate packet count
distributions in Section V-A. As expected, aggregates exhibit a

10Appendix Fig. 26 graphs � for all more data sets and models.

Fig. 12. 8- and 16-aggregate population distributions for R1.

Fig. 13. 8- and 16-aggregate population distributions for A2.

wide range of populations. The multifractal model echoes the
real data, particularly in the tail region.

It is worth noting that aggregate population distributions are
the most effective test we have found to differentiate address
structures. For example, before generating our multifractal
model, we developed an algorithm that generates a random
address structure exactly matching a given set of values,
discriminating prefixes, and even discriminating prefixes for
aggregates. Despite the fitting, the aggregate population distri-
butions generated by the model were far off the real data, much
farther off than our current multifractal model.

Aggregate population distributions also demonstrate our
model’s limitations. Fig. 13 shows distributions for A2 and its
model. The model is pretty far off. Overall, the models for R1
and W1 match their traces’ aggregate population distributions
well, while the models for A2 and U1 do not.11 The most
obvious difference between these sets of traces can be seen on
plots of . A2 and U1 have lower amounts of aggregation at
medium-to-long prefixes than R1 and W1, but higher amounts
of aggregation at long prefixes. In Figs. 8 and 9, for example,
A2’s dips appreciably below that of R1 for ,
only to rise above it for . Our current multifractal model
does not achieve both these properties simultaneously; if a
model has low for , it has low for .

VIII. PROPERTIES OF

We now turn from the multifractal address model to the
metric itself. In particular, we investigate ’s properties as a
concise characterization, or “fingerprint”, of the traffic visible

11Appendix Fig. 27 shows similar graphs for U1 and W1 and their models.
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Fig. 14.  for U1, and for longer and shorter traces from the same data.

Fig. 15. Variations of  over time for different traces. The error bars indicate
the range of variations of  .

at a location. Is dominated by the sheer number of active
addresses ? Does the graph change over short time scales
at a single location? And how do unusual events, such as heavy
worm propagation, show up in ?

A. Sampling Effects

All of our structural characterizations depend, to some de-
gree, on , the total number of active addresses observed. Sam-
pling gives a useful analogy. Think of an address trace as a sam-
pling of an underlying discrete probability distribution, where
each destination address has a fixed probability. Then re-
sembles a sample size. How much do and depend on this
sample size? For example, if we sampled shorter or longer sec-
tions of a trace, how would that affect ? Too-sensitive depen-
dence on would make much less useful as a fingerprint.

We vary by examining contiguous sections of a 24-hour
trace containing U1 as a 4-hour-long subset. These shorter and
longer sections effectively represent differently sized samples
of an underlying probability distribution, assuming that distri-
bution did not change significantly over the 24-hour period. The
distribution almost certainly does change, but our results show
its structural characteristics do not change terribly much.

Fig. 14 shows for U1 traces with durations ranging from
24 hours to 6 minutes. The number of active addresses varies
over more than an order of magnitude, from 161 560 to 11 838.
We would expect the curve to shift downward as decreases,
since is the product of the s. For small sample sizes, and the
6-minute trace in particular, the shape of the curve also changes
significantly—the characteristic bumps at and have
disappeared and the curve turns up significantly for ,

a property not visible in any other section.12 The other curves,
however, resemble one another, and differ visibly from other
data sets. (Compare Fig. 8, for example.) For this data set, at
least, the curve displays properties independent of relatively
large variations in the sample size .

B. Short-Term Stability

For address structure characterizations to be useful as traffic
“fingerprints”, they must not vary too much on the order of min-
utes or even one hour under normal traffic conditions. We will
see that this is indeed the case.

To examine ’s stability over time, we break traces U2,
A2, and R1 into sequential nonoverlapping segments, each
containing 32 768 addresses. That is, we process the traces in
temporal order, collecting addresses and packet counts; but just
before recording the 32 769th address, we output the current
section of the trace and start a new one. The traces break into
about 10 sections each. The segments from a given trace all last
for about the same duration; the average duration is 6.7 minutes
for U2, 7.5 minutes for A1, and 6.6 minutes for R1. We would
like sections from the same trace to resemble one another, and
to retain their differences from other traces.

First, we calculated the average number of addresses that ad-
jacent sections have in common. If 32 767 addresses are the
same, then obviously the sections will have similar character-
istics. In fact, about half of the addresses change from section
to section; the first and second A1 sections, for example, share
just 15 239 addresses.

Despite this major address turnover, Fig. 15 demonstrates that
the shape of the curve remains quite stable, especially for
medium-to-large . Each line shows the average for the sec-
tions of some trace; the error bars on that line show the max-
imum and minimum values in any section of that trace. For
much of the address space, the error bars from different traces do
not even overlap. Note that is identically 32 768 for every sec-
tion on the graph: differences between traces are caused purely
by address structure.

C. Worms

Up to this point, we have examined the characteristics of ad-
dress structures under normal network conditions. Now we con-
sider how worm propagation, and specifically the propagation of
Code Red 1 and 2, affects address structure.

The Code Red worm [23] exploits a buffer overflow vulner-
ability in Microsoft’s IIS webservers. In order to spread the
worm (version 1 and 2) to as many hosts as possible, the worm
generates a random list of IP addresses and tries to infect each
one in turn. Code Red 1 picks addresses completely randomly.
Code Red 2, by contrast, attacks addresses with greater prob-
ability that lie within the same aggregates as the infected host.
(Three-eighths of the time, it chooses a random address within
the same /16; one-half of the time, it chooses within the same
/8; one-eighth of the time, completely randomly.) This reduces
the time that the worm wastes on dead addresses.

12A possible explanation: Like all our traces, U1 contains bidirectional data.
At long time scales, the large variety of external sites visited will dominate vis-
ible address structure. At short time scales, that variety cannot express itself, so
the structural dynamics of internal addresses become more important.
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Fig. 16.  for external addresses before and after Code Red 1 and 2.

Fig. 17. Aggregate packet count distribution for 24-aggregates before and after
Code Red 1 and 2.

We would expect this behavior to greatly affect the address
structure observed at a given site. Any site has a usual proba-
bility distribution for the addresses that might be expected to ac-
cess it in a given time; Code Red would add all infected hosts to
that distribution. Also, the sheer magnitude of Code Red would
change the address structure by changing the rate at which new
addresses enter the system. We examine the address structure
not to advocate its use for worm detection, but to demonstrate
network behavior very different from the normal conditions de-
scribed elsewhere in this work.

We obtained hour-long flow traces from a national laboratory
taken the day before Code Red 1 hit (July 18, 2001, );
the first day of Code Red 1’s widespread infection (July 19,
2001, ); the day before Code Red 2 hit (August
3, 2001, ; Code Red 1 was still active); and the
first day of Code Red 2’s widespread infection (August 4, 2001,

). Unlike our other traces, these contain only the
addresses of hosts outside the laboratory that attempted to open
connections inside the laboratory. This avoids effects from the
lab’s own infected hosts.

As expected, Code Red wildly changed the structure of ad-
dresses seeking to contact the lab. Fig. 16 shows a plot of for
the four traces. The July 18 line is representative for connections
predating Code Red: small , small . After Code Red, a much
broader range of addresses contact the lab, raising and the ag-
gregate ratio. The aggregate packet count distribution, shown in
Fig. 17, changes as well; it drops, since many aggregates have
been added that contain only unsuccessful probes. Fig. 17 may

Fig. 18. Log-log complementary CDFs of packet counts for addresses and
16-aggregates in all traces. (See Section V-A.)

Fig. 19. Complementary CDFs of 8- and 24-aggregate packet counts for R1
and modified traces. (Compare Fig. 4 in Section V-B.) Address structure seems
to be the most important factor affecting aggregate packet counts for /8s, but
per-address packet counts dominate for smaller /24s.

also demonstrate a difference between the two Code Reds: Code
Red 2 generates more medium-sized aggregates, perhaps be-
cause its locality means that networks near the lab in IP space
tend to probe it more often.

IX. CONCLUSION

Address structure is key to understanding some interesting
properties of large aggregates, such as their packet count distri-
butions. A multifractal model of observed addresses can echo
many properties of the address structures we collected. We de-
veloped specific structural characterizations to examine how ad-
dresses aggregate at different levels. These structural charac-
terizations differ between sites, yet are relatively insensitive to
sample size and stable over short time scales. Without a con-
vincing description of how address structure arises, the results
of these explorations must be considered preliminary.

APPENDIX

ADDITIONAL FIGURES

These additional figures (Figs. 18–27) show our data sets in
more depth. The main text refers to them in footnotes where
appropriate. Notes on particular figures follow.

Fig. 18 shows log-log complementary CDFs of packet counts
for addresses and 16-aggregates for all our traces; compare
Fig. 3 in Section V-A. We were not able to calculate packet
counts for TCP/UDP flows for many of these traces because
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Fig. 20. Multifractal spectra for R1 and its model, p = 15, 17, and 18. (See
Section VI-C.)

Fig. 21. Multifractal spectra for all data sets, p = 16. (See Section VI-C.)

Fig. 22. Multifractal spectra for U1 and its model, and for W1 and its model,
p = 16. (See Section VI-C.)

Fig. 23. Aggregate counts n for all data sets, and for models of U1, A2, R1,
and W1. (See Section VII-A. Note: the Y axis is not log scale.)

Fig. 24.  for all data sets, and for models of U1, A2, R1, and W1. (See
Section VII-A.)

Fig. 25.  for U1 and its model, and for W1 and its model. (See
Section VII-A.)

Fig. 26. CDFs of discriminating prefix counts � for U1, A2, R1, and W1 and
their models. (See Section VII-B.)

Fig. 27. 8- and 16-aggregate population distributions for U1 and W1 and their
models. (See Section VII-C.)

the traces contained no per-flow data. Fits to the upper tails
of these curves yield values around 1 for , the power in a
power-law distribution. However, not all distributions seem
strongly heavy-tailed; see the lines for A1, for example.
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