
Consolidating Concurrency Control and Consensus
for Commits under Conflicts

Shuai Mu?, Lamont Nelson?, Wyatt Lloyd†, and Jinyang Li?
?New York University, †University of Southern California

Abstract
Conventional fault-tolerant distributed transactions layer
a traditional concurrency control protocol on top of the
Paxos consensus protocol. This approach provides scala-
bility, availability, and strong consistency. When used for
wide-area storage, however, this approach incurs cross-
data-center coordination twice, in serial: once for con-
currency control, and then once for consensus. In this
paper, we make the key observation that the coordination
required for concurrency control and consensus is highly
similar. Specifically, each tries to ensure the serialization
graph of transactions is acyclic. We exploit this insight
in the design of Janus, a unified concurrency control and
consensus protocol. Janus targets one-shot transactions
written as stored procedures, a common, but restricted,
class of transactions. Like MDCC [16] and TAPIR [51],
Janus can commit unconflicted transactions in this class in
one round-trip. Unlike MDCC and TAPIR, Janus avoids
aborts due to contention: it commits conflicted transac-
tions in this class in at most two round-trips as long as
the network is well behaved and a majority of each server
replica is alive.
We compare Janus with layered designs and TAPIR

under a variety of workloads in this class. Our evaluation
shows that Janus achieves∼5× the throughput of a layered
system and 90% of the throughput of TAPIR under a
contention-free microbenchmark. When the workloads
become contended, Janus provides much lower latency
and higher throughput (up to 6.8×) than the baselines.

1 Introduction
Scalable, available, and strongly consistent distributed
transactions are typically achieved through layering a
traditional concurrency control protocol on top of shards
of a data store that are replicated by the Paxos [19, 33]
consensus protocol. Sharding the data into many small
subsets that can be stored and served by different servers
provides scalability. Replicating each shard with con-

This is a revised [53] and preferred version for OSDI’16.

sensus provides availability despite server failure. Co-
ordinating transactions across the replicated shards with
concurrency control provides strong consistency despite
conflicting data accesses by different transactions. This
approach is commonly used in practice. For example,
Spanner [9] implements two-phase-locking (2PL) and
two phase commit (2PC) in which both the data and
locks are replicated by Paxos. As another example, Per-
colator [35] implements a variant of opportunistic con-
currency control (OCC) with 2PC on top of BigTable [7]
which relies on primary-backup replication and Paxos.

When used forwide-area storage, the layering approach
incurs cross-data-center coordination twice, in serial:
once by the concurrency control protocol to ensure trans-
action consistency (strict serializability [34, 45]), and
another time by the consensus protocol to ensure replica
consistency (linearizability [14]). Such double coordina-
tion is not necessary and can be eliminated by consoli-
dating concurrency control and consensus into a unified
protocol. MDCC [16] and TAPIR [51] showed how uni-
fied approaches can provide the read-commited and strict
serializability isolation levels, respectively. Both pro-
tocols optimistically attempt to commit and replicate a
transaction in one wide-area roundtrip. If there are con-
flicts among concurrent transactions, however, they abort
and retry, which can significantly degrade performance
under contention. This concern is more pronounced for
wide area storage: as transactions take much longer to
complete, the amount of contention rises accordingly.

This paper proposes the Janus protocol for building
fault-tolerant distributed transactions. Like TAPIR and
MDCC, Janus can commit and replicate transactions in
one cross-data-center roundtrip when there is no con-
tention. In the face of interference by concurrent con-
flicting transactions, Janus takes at most one additional
cross-data-center roundtrip to commit.

The key insight of Janus is to realize that strict serializ-
ability for transaction consistency and linearizability for
replication consistency can both be mapped to the same
underlying abstraction. In particular, both require the
execution history of transactions be equivalent to some
linear total order. This equivalence can be checked by

1

constructing a serialization graph based on the execution
history. Each vertex in the graph corresponds to a trans-
action. Each edge represents a dependency between two
transactions due to replication or conflicting data access.
Specifically, if transactionsT1 andT2 make conflicting ac-
cess to some data item, then there exists an edge T1 → T2
if a shard responsible for the conflicted data item executes
or replicates T1 before T2. An equivalent linear total or-
der for both strict serializability and linearizability can be
found if there are no cycles in this graph.
Janus ensures an acyclic serialization graph in two

ways. First, Janus captures a preliminary graph by track-
ing the dependencies of conflicting transactions as they
arrive at the servers that replicate each shard. The co-
ordinator of a transaction T then collects and propagates
T’s dependencies from sufficiently large quorums of the
servers that replicate each shard. The actual execution
of T is deferred until the coordinator is certain that all of
T’s participating shards have obtained all dependencies
for T . Second, although the dependency graph based on
the arrival orders of transactions may contain cycles, T’s
participating shards re-order transactions in cycles in the
same deterministic order to ensure an acyclic serializa-
tion graph. This provides strict serializability because all
servers execute conflicting transactions in the same order.
In the absence of contention, all participating shards

can obtain all dependencies for T in a single cross-data-
center roundtrip. In the presence of contention, two types
conflicts can appear: one among different transactions
and the other during replication of the same transaction.
Conflicts between different transactions can still be han-
dled in a single cross-data-center roundtrip. They mani-
fest as cycles in the dependency graph and are handled by
ensuring deterministic execution re-ordering. Conflicts
that appear during replication of the same transaction,
however, require a second cross-data-center roundtrip to
reach consensus among different server replicas with re-
gard to the set of dependencies for the transaction. Nei-
ther scenario requires Janus to abort a transaction. Thus,
Janus always commits with at most two cross-data-center
roundtrips in the face of contention as long as network
andmachine failures do not conspire to prevent amajority
of each server replica from communicating.
Janus’s basic protocol and its ability to always commit

assumes a common class of transactionalworkloads: one-
shot transactions written as stored procedures. Stored
procedures are frequently used [12, 13, 15, 22, 31, 40,
43, 46] and send transaction logic to servers for execu-
tion as pieces instead of having clients execute the logic
while simply reading and writing data to servers. One-
shot transactions preclude the execution output of one
piece being used as input for a piece that executes on
a different server. One-shot transactions are sufficient
for many workloads, including the popular and canonical

TPC-C benchmark. While the design of Janus can be
extended to support general transactions, doing so comes
at the cost of additional inter-server messages and the
potential for aborts.

This approach of dependency tracking and execution
re-ordering has been separately applied for concurrency
control [31] and consensus [20, 30]. The insight of Janus
is that both concurrency control and consensus can use
a common dependency graph to achieve consolidation
without aborts.

We have implemented Janus in a transactional key-
value storage system. To make apples-to-apples com-
parisons with existing protocols, we also implemented
2PL+MultiPaxos, OCC+MultiPaxos and TAPIR [51] in
the same framework. We ran experiments on Ama-
zon EC2 across multiple availability regions using mi-
crobenchmarks and the popular TPC-C benchmark [1].
Our evaluation shows that Janus achieves ∼5× the
throughput of layered systems and 90% of the through-
put of TAPIR under a contention-free microbenchmark.
When the workloads become contended due to skew or
wide-area latency, Janus provides much lower latency
and more throughput (up to 6.8×) than existing systems
by eliminating aborts.

2 Overview
This section describes the system setup we target, reviews
background and motivation, and then provides a high
level overview of how Janus unifies concurrency control
and consensus.

2.1 System Setup
We target thewide-area setupwhere data is sharded across
servers and each data shard is replicated in several geo-
graphically separate data centers to ensure availability.
We assume each data center maintains a full replica of
data, which is a common setup [4, 26]. This assump-
tion is not strictly needed by existing protocols [9, 51]
or Janus. But, it simplifies the performance discussion
in terms of the number of cross-data-center roundtrips
needed to commit a transaction.

We adopt the execution model where transactions are
represented as stored procedures, which is also com-
monly used [12, 13, 15, 22, 31, 40, 43, 46]. As data
is sharded across machines, a transaction is made up
of a series of stored procedures, referred to as pieces,
each of which accesses data items belonging to a single
shard. The execution of each piece is atomic with regard
to other concurrent pieces through local locking. The
stored-procedure execution model is crucial for Janus to
achieve good performance under contention. As Janus

2

System Commit latency in How to resolve conflicts How to resolve conflicts
wide-area RTTs during replication during execution/commit

2PL+MultiPaxos [9] 2∗ Leader assigns ordering Locking†

OCC+MultiPaxos [35] 2* Leader assigns ordering Abort and retry
Replicated Commit [28] 2 Leader assigns ordering Abort and retry

TAPIR [51] 1 Abort and retry commit Abort and retry
MDCC [16] 1 Retry via leader Abort

Janus 1 Reorder Reorder

Table 1: Wide-area commit latency and conflict resolution strategies for Janus and existing systems. MDCC
provides read commited isolation, all other protocols provide strict serializability.

must serialize the execution of conflicting pieces, stored
procedures allows the execution to occur at the servers,
which is much more efficient than if the execution was
carried out by the clients over the network.

2.2 Background and Motivation
The standard approach to building fault-tolerant dis-
tributed transactions is to layer a concurrency control
protocol on top of a consensus protocol used for repli-
cation. The layered design addresses three paramount
challenges facing distributed transactional storage: con-
sistency, scalability and availability.

• Consistency refers to the ability to preclude “bad” in-
terleaving of concurrent conflicting operations. There
are two kinds of conflicts: 1) transactions containing
multiple pieces performing non-serializable data ac-
cess at different data shards. 2) transactions replicating
their writes to the same data shard in different orders at
different replica servers. Concurrency control handles
the first kind of conflict to achieve strict serializabil-
ity [45]; consensus handles the second kind to achieve
linearizability [14].

• Scalability refers to the ability to improve performance
by adding more machines. Concurrency control proto-
cols naturally achieve scalability because they operate
on individual data items that can be partitioned across
machines. By contrast, consensus protocols do not
address scalability as their state-machine approach du-
plicates all operations across replica servers.

• Availability refers to the ability to survive and recover
from machine and network failures including crashes
and arbitrary message delays. Solving the availability
challenge is at the heart of consensus protocols while
traditional concurrency control does not address it.

Because concurrency control and consensus each
solves only two out of the above three challenges, it is

∗Additional roundtrips are required if the coordinator logs the commit
status durably before returning to clients.

†2PL also aborts and retries due to false positives in distributed deadlock
detection.

natural to layer one on top of the other to cover all bases.
For example, Spanner [9] layers 2PL/2PC over Paxos.
Percolator [35] layers a variant of OCC over BigTable
which relies on primary-backup replication and Paxos.

The layered design is simple conceptually, but does
not provide the best performance. When one protocol
is layered on top of the other, the coordination required
for consistency occurs twice, serially; once at the concur-
rency control layer, and then once again at the consensus
layer. This results in extra latency that is especially costly
for wide area storage. This observation has been made by
TAPIR andMDCC [16, 51], which point out that layering
suffers from over-coordination.

Aunification of concurrency control and consensus can
reduce the overhead of coordination. Such unification is
possible because the consistency models for concurrency
control (strict serializability [34, 45]) and consensus (lin-
earizability [14]) share great similarity. Specifically, both
try to satisfy the ordering constraints among conflicting
operations to ensure equivalence to a linear total order-
ing. Table 1 classifies the techniques used by existing
systems to handle conflicts that occur during transaction
execution/commit and during replication. As shown, op-
timistic schemes rely on abort and retry, while conser-
vative schemes aim to avoid costly aborts. Among the
conservative schemes, consensus protocols rely on the
(Paxos) leader to assign the ordering of replication oper-
ations while transaction protocols use per-item locking.

In order to unify concurrency control and consensus,
one must use a common coordination scheme to handle
both types of conflicts in the same way. This design
requirement precludes leader-based coordination since
distributed transactions that rely on a single leader to
assign ordering [41] do not scale well. MDCC [16] and
TAPIR [51] achieve unification by relying on aborts and
retries for both concurrency control and consensus. Such
an optimistic approach is best suited for workloads with
low contention. The goal of our work is to develop a
unified approach that can work well under contention by
avoiding aborts.

3

Execute 2PC Prepare
(any interleaving during

Execute or Prepare
causes abort)

2PC Commit or Abort

Pa
xo

s
ac

ce
pt

Servers Sx, Sx replicate item X; Sy Sy replicate item Y

Data
Center-1

Data
Center-2

Sx

Sy

Sx

Sy

1

1

2

2

Paxos

accept

Pa
xo

s
ac

ce
pt

Paxos

accept

1 12 2

Coordinator

(a) OCC over Multi-Paxos.

T
2→

T
1

T1→
T2

Sx

Sy

Sx

Sy

(pieces are dispatched,
 but execution is deferred)

Pre-accept Accept
(Skipped if

no contention
during replication)

T1
↔

T2

Commit
(reorder and execute)

Data
Center-1

Data
Center-2

Servers Sx, Sx replicate item X; Sy Sy replicate item Y1 2 1 2

1

1

2

2

Coordinator
for T1

(b) Janus

Figure 1: Workflows for committing a transaction that increments x and y that are stored on different shards.
The execute and 2PC-prepare messages in OCC over Multi-Paxos can be combined for stored procedures.

2.3 A Unified Approach to Concurrency
Control and Consensus

Can we design unify concurrency control and consen-
sus with a common coordination strategy that minimizes
costly aborts? A key observation is that the ordering
constraints desired by concurrency control and replica-
tion can both be captured by the same serialization graph
abstraction. In the serialization graph, vertexes represent
transactions and directed edges represent the dependen-
cies among transactions due to the two types of conflicts.
Both strict serializability and linearizability can be re-
duced to checking that this graph is free of cycles [20, 45].

T1 T2

T1: Write(X), T2:Write(X)

 T2: Write(X), T1: Write (X)S'x:

Sx:

(a) A cycle representing
replication conflicts.

T1 T2

 T1: Write(X), T2: Write(X)

T2: Write(Y), T1: Write(Y)

Sx:

Sy:

(b) A cycle representing
transaction conflicts.

Figure 2: Replication and transaction conflicts can be
represented as cycles in a common serialization graph.

Janus attempts to explicitly capture a preliminary se-
rialization graph by tracking the dependencies of con-
flicting operations without immediately executing them.
Potential replication or transaction conflicts both man-
ifest as cycles in the preliminary graph. The cycle in
Figure 2a is due to conflicts during replication: T1’s write
of data item X arrives before T2’s write on X at server
Sx , resulting in T1 → T2. The opposite arrival order hap-
pens at a different server replica S′x , resulting in T1 ← T2.
The cycle in Figure 2b is due to transaction conflicts: the
server Sx receives T1’s write on item-x before T2’s write

on item-x while server Sy receives the writes on item-
y in the opposite order. In order to ensure a cycle-free
serialization graph and abort-free execution, Janus de-
terministically re-orders transactions involved in a cycle
before executing them.

To understand the advantage and challenges of unifi-
cation, we contrast the workflow of Janus with that of
OCC+MultiPaxos using a concrete example. The exam-
ple transaction, T1: x++; y++;, consists of two pieces, each
is a stored procedure incrementing item-x or item-y.

Figure 1a shows how OCC+MultiPaxos executes and
commits T1. First, the coordinator of T1 dispatches the
two pieces to item-x and item-y’s respective Paxos lead-
ers, which happen to reside in different data centers. The
leaders execute the pieces and buffer the writes locally.
To commit T1, the coordinator sends 2PC-prepare re-
quests to Paxos leaders, which perform OCC validation
and replicate the new values of x and y to others. Be-
cause the pieces are stored procedures, we can combine
the dispatch and 2PC-preparemessages so that the coordi-
nator can execute and commit T1 in two cross-data-center
roundtrips in the absence of conflicts. Suppose a concur-
rent transaction T2 also tries to increment the same two
counters. The dispatch messages (or 2PC-prepares) of
T1 and T2 might be processed in different orders by dif-
ferent Paxos leaders, causing T1 and/or T2 to be aborted
and retried. On the other hand, because Paxos leaders
impose an ordering on replication, all replicas for item-x
(or item-y) process the writes of T1 or T2 consistently, but
at the cost of an additional wide-area roundtrip.

Figure 1b shows the workflow of Janus. To commit and
execute T1, the coordinator moves through three phases:
PreAccept,Accept andCommit, ofwhich theAcceptphase
may be skipped. InPreAccept, the coordinator dispatches
T1’s pieces to their corresponding replica servers. Unlike
OCC+MultiPaxos, the server does not execute the pieces

4

immediately but simply tracks their arrival orders in its
local dependency graph. Servers reply to the coordina-
tor with T1’s dependency information. The coordinator
can skip the Accept phase if enough replica servers reply
with identical dependencies, which happens when there
is no contention among server replicas. Otherwise, the
coordinator engages in another round of communication
with servers to ensure that they obtain identical depen-
dencies forT1. In theCommit phase, each server executes
transactions according to their dependencies. If there is
a dependency cycle involving T1, the server adheres to a
deterministic order in executing transactions in the cycle.
As soon as the coordinator hears back from the nearest
server replica which typically resides in the local data
center, it can return results to the user.
As shown in Figure 1b, Janus attempts to coordi-

nate both transaction commit and replication in one shot
with the PreAccept phase. In the absence of contention,
Janus completes a transaction in one cross-data-center
roundtrip, which is incurred by thePreAccept phase. (The
commit phase incurs only local data-center latency.) In
the presence of contention, Janus incurs two wide-area
roundtrips from the PreAccept and Accept phases. These
two wide-area roundtrips are sufficient for Janus to be
able to resolve replication and transaction commit con-
flicts. The resolution is achieved by tracking the depen-
dencies of transactions and then re-ordering the execution
of pieces to avoid inconsistent interleavings. For exam-
ple in Figure 1b, due to contention between T1 and T2,
the coordinator propagates T1 ↔ T2 to all server replicas
during commit. All servers detect the cycle T1 ↔ T2 and
deterministically choose to execute T1 before T2.

3 Design
This section describes the design for the basic Janus pro-
tocol. Janus is designed to handle a common class of
transactions with two constraints: 1) the transactions do
not have any user-level aborts. 2) the transactions do not
contain any piece whose input is dependent on the exe-
cution of another piece, i.e., they are one-shot transac-
tions [15]. Both the example in Section 2 and the popular
TPC-C workload belong to this class of transactions. We
discuss how to extend Janus to handle general transac-
tions and the limitations of the extension in Section 4.
Additional optimizations and a full TLA+ specification
are included in a technical report [32].

3.1 Basic Protocol
The Janus system has three roles: clients, coordinators,
and servers. A client sends a transaction request as a set
of stored procedures to a nearby coordinator. The co-

Algorithm 1: Coordinator::DoTxn(T=[α1, ..., αN])
1 T’s metadata is a globally unique identifier, a shard

list, and an abandon flag.
2 PreAccept Phase:
3 send PreAccept(T , ballot) to participating servers,

ballot defaults to 0
4 if ∀ piece αi ∈ α1...αN , αi has a fast quorum of

PreAcceptOKs with the same dependency list depi
then

5 dep←Union(dep1, dep2, ..., depN)
6 goto commit phase
7 else if ∀ αi ∈ α1...αN , αi has a majority quorum of

PreAcceptOKs then
8 foreach αi ∈ α1...αN do
9 depi ←Union dependencies returned by the

majority quorum for piece αi .
10 dep←Union(dep1, dep2, ..., depN)
11 goto accept phase
12 else
13 return FailureRecovery(T)
14 Accept Phase:
15 send Accept(T , dep, ballot) to participating servers
16 if ∀ αi has a majority quorum of Accept-OKs then
17 goto commit phase
18 else
19 return FailureRecovery(T)
20 Commit Phase:
21 send Commit(T , dep) to participating servers
22 return to client after receiving execution results.

ordinator is responsible for communicating with servers
storing the desired data shards to commit the transaction
and then proxying the result to the client. We require
that the shards a transaction involves to be known be-
fore the coordinator dispatches it. Coordinators have no
global nor persistent state and they do not communicate
with each other. In our evaluation setup, coordinators are
co-located with clients.

Suppose a transaction T involves n pieces, α1,...,αn.
Let r be the number of servers replicating each shard.
Thus, there are r servers processing each piece αi . We
refer to them as αi’s participating servers. We refer to
the set of r ∗ n servers for all pieces as the transaction T’s
participating servers.

There is a fast path and standard path of execution in
Janus. When there is no contention, the coordinator takes
the fast path which consists of two phases: pre-accept and
commit. When there is contention, the coordinator takes
the standard path of three phases: pre-accept, accept and
commit, as shown in Figure 1b.

5

Algorithm 2: Server S::PreAccept(T , ballot)
23 if highest_ballotS[T] < ballot then
24 return PreAccept-NotOK
25 highest_ballotS[T]←ballot
26 GS[T].dep←T’s direct dependencies in GS
27 GS[T].ballot←ballot
28 GS[T].status←pre-accepted
29 return PreAccept-OK, GS[T].dep

Algorithm 3: Server S::Accept(T , dep, ballot)
30 if GS[T].status is committing or
31 highest_ballotS[T] > ballot then
32 return Accept-NotOK, highest_ballotS[T]
33 highest_ballotS[T]←ballot
34 GS[T].dep←dep
35 GS[T].ballot←ballot
36 GS[T].status←accepted
37 return Accept-OK

Dependency graphs. At a high level, the goal of pre-
accept and accept phase is to propagate the necessary
dependency information among participating servers. To
track dependencies, each server S maintains a local de-
pendency graph, GS . This is a directed graph where each
vertex represents a transaction and each edge represents
the chronological order between two conflicting transac-
tions. A vertex’s incoming neighbors represent the set
of direct dependencies for transaction T , which is stored
in the graph as T’s dependency list (GS[T].dep). Trans-
action T ′ is called an ancestor of T if there exists a path
T ′{T . Additionally, each vertex stores the status of the
transaction, which captures the stage of the protocol the
transaction is currently in. The three status types are
pre-accepted, accepted and committing. Servers and co-
ordinators exchange and merge various dependency lists
to ensure that the required dependencies reach the rele-
vant servers before they execute a transaction.
In Janus, the key invariant for correctness is that all

participating servers must obtain the exact same set of
dependencies for a transaction T and its ancestors before
executing T . This is challenging due to the interference
from other concurrent conflicting transactions and from
the failure recovery mechanism.
Next, we describe the fast path of the protocol, which is

taken by the coordinator in the absence of interference by
concurrent transactions. Pseudocode for the coordinator
is shown in Algorithm 1.

The PreAccept phase. The coordinator sends PreAc-
cept messages both to replicate transaction T and
to establish a preliminary ordering for T among its

Algorithm 4: Server S::Commit(T , dep)
38 GS[T].dep←dep
39 GS[T].status←committing
40 Wait & Inquire Phase:
41 repeat
42 choose T ′{T : GS[T ′].status < committing
43 if T ′ does not involve S then
44 send Inquire(T ′) to a server that T ′ involves
45 wait until GS[T ′].status is committing
46 until ∀T ′{T in GS: GS[T ′].status is committing
47 Execute Phase:
48 repeat
49 choose T ′ ∈ GS: ReadyToProcess(T ′)
50 scc←StronglyConnectedComponent(GS , T ′)
51 for each T ′′ in DeterministicSort(scc) do
52 if T ′′ involves S and not T ′′.abandon then
53 T ′′.result←execute T ′′

54 processedS[T ′′]←true

55 until processedS[T] is true
56 reply CommitOK, T.abandon, T.result

Algorithm 5: Server S::ReadyToProcess(T)
57 if processedS[T] or GS[T].status < committing then
58 return false
59 scc← StronglyConnectedComponent(GS , T)
60 for each T ′ < scc and T ′{T do
61 if processedS[T ′] , true then
62 return false

63 return true

participating servers. As shown in Algorithm 2, upon
receiving the pre-accept message for T , server S inserts
T into its local dependency graph Gs by creating the
dependency list for T . The dependency list contains a
transaction T ′ if T ′ and T both intend to make conflicting
access to a common data item at server S. The server
then replies PreAccept-OK with T’s dependency list.
The coordinator waits to collect a sufficient number
of pre-accept replies for each piece. There are several
scenarios (Algorithm 1, lines 4-11). In order to take the
fast path, the coordinator must receive a fast quorum
of replies containing the same dependency list for each
piece of the transaction. A fast quorum F in Janus
contains all r replica servers.

The fast quorum concept is due to Lamport who
originally applied it in the Fast Paxos consensus proto-
col [21]. In Fast Paxos, a fast quorum must contain at
least three quarters of the replicas. It allows one to skip

6

the paxos leader, and directly send a proposed value to
the replica servers. By contrast, when applying the idea
to unify consensus and concurrency control, the size of
the fast quorum is increased to include all replica servers.
Furthermore, the fast path of Janus has the additional
requirement that the dependency list returned by each
server in the fast quorum must be the same. This ensures
that servers obtain the same set of dependencies for T on
the fast path as they do on the standard path and during
failure recovery.

The Commit phase. The coordinator aggregates the
dependency list of every piece and sends the result in
a Commit message to all servers (Algorithm 1, lines
4-6). When server S receives the commit request for T
(Algorithm 4), it replaces T’s dependency list in its local
graph GS and upgrades the status of T to committing.
In order to execute T , the server must ensure that all
ancestors of T have the status committing. If server S
participates in ancestor transaction T ′, it can simply wait
for the commit message for T ′. Otherwise, the server
issues an Inquire request to the nearest server S′ that
participates in T ′ to request the dependency list of T ′

after T ′ has become committing on S′.

In the absence of contention, the dependency graph
at every server is acyclic. Thus, after all the ancestors
of T become committing at server S, it can perform a
topological sort on the graph and executes the transaction
according to the sorted order. After executing transaction
T , the server marks T as processed locally. After a
server executes a (piece of) transaction, it returns the
result back to the coordinator. The coordinator can reply
to the client as soon as it receives the necessary results
from the nearest server replica, which usually resides in
the local data center. Thus, on the fast path, a transaction
can commit and execute with only one cross-data center
round-trip, taken by the pre-accept phase.

3.2 Handling Contention Without Aborts
Contentionmanifests itself in twoways during the normal
execution (Algorithm 1). As an example, consider two
concurrent transactions T1, T2 of the form: x++; y++. First,
the coordinator may fail to obtain a fast quorum of identi-
cal dependency lists for T1’s piece x++ due to interference
from T2’s pre-accept messages. Second, the dependency
information accumulated by servers may contain cycles,
e.g., with both T1{T2 and T2{T1 if the pre-accept mes-
sages of T1 and T2 arrive in different orders at different
servers. Janus handles these two scenarios through the
additional accept phase and deterministic re-ordering.

The Accept phase. If some piece does not have a fast
quorum of identical dependencies during pre-accept, then
consensus on T’s dependencies has not yet been reached.
In particular, additional dependencies for T may be in-
serted later, or existing dependencies may be replaced
(due to the failure recovery mechanism, Section 3.3).

The accept phase tries to reach consensus via a bal-
lot mechanism similar to the one used by Paxos. The
coordinator aggregates the dependency lists returned by
a majority quorum of pre-accepts and sends an accept
message to all participating servers with ballot number
0 (Algorithm 1, line 15). The server handles an accept
message as shown in Algorithm 3; It first checks whether
T’s status in its local dependency graph is committing and
whether the highest ballot seen for T is greater than the
one in the accept request. If so, the server rejects the
accept request. Otherwise, the server replaces T’s depen-
dency list with the one received, updates its status and
the highest ballot seen for T before replying Accept-OK.
If the coordinator receives a majority quorum of Accept-
OKs, it moves on to the commit phase. Otherwise, the
accept phase has failed and the coordinator initiates the
failure recovery mechanism (Section 3.3). In the absence
of active failure recovery done by some other coordinator,
the accept phase in Algorithm 1 always succeeds.

For a piece αi , once the coordinator obtains a fast
quorum of PreAccept-OKs with the same dependency
list depi or a majority quorum of Accept-OKs accepting
the dependency list depi , then servers have reached con-
sensus on αi’s dependency list (depi). When there are
concurrent conflicting transactions, the dependency lists
obtained from different pieces (dep1, ..., depN) may not
be identical. The coordinator aggregates them together
and sends the resulting dependencies in the commit phase.

Deterministic execution ordering. In the general case
with contention, the servers can observe cyclic depen-
dencies among T and its ancestors after waiting for all
T’s ancestors to advance their status to committing. In
this case, the server first computes all strongly connected
components (SCCs) among T and its ancestors in GS .
It then performs a topological sort across all SCCs and
executes SCCs in sorted order. Each SCC contains one
or more transactions. SCCs with multiple transactions
are executed in an arbitrary, but deterministic order (e.g.,
sorted by transaction ids). Because all servers observe
the same dependency graph and deterministically order
transactions within a cycle, they execute conflicting trans-
actions in the same order.

3.3 Handling Coordinator Failure
The coordinator may crash at anytime during protocol
execution. Consequently, a participating server for trans-
action T will notice that T has failed to progress to the

7

Algorithm 6: Coordinator C::FailureRecovery(T)
64 Prepare Phase:
65 ballot← highest ballot number seen + 1
66 send Prepare(T , ballot) to participating servers
67 if ∃ Tx-Done, dep among replies then
68 //T’s dependency list dep has been agreed upon
69 goto commit phase
70 else if ∃ αi without a majority quorum of

Prepare-OKs then
71 goto prepare phase
72 let R be the set of replies with the highest ballot
73 if ∃ (dep, accepted) ∈ R then
74 goto accept phase with dep
75 else if R contains at least F ∩M identical

dependencies (depi , pre-accepted) for each piece
then

76 dep←Union(dep1, dep2, .. depN)
77 goto accept phase with dep
78 else if ∃ (dep, pre-accepted) ∈ R then
79 goto pre-accept phase, but avoid the fast path
80 else
81 T .abandon←true
82 goto accept phase with dep←nil

Algorithm 7: Server S::Prepare(T , ballot)
83 dep←GS[T].dep
84 if GS[T].status ≥ commiting then
85 return Tx-Done, dep
86 else if highest_ballotS[T] > ballot then
87 return Prepare-NotOK, highest_ballotS[T]
88 highest_ballotS[T]←ballot
89 reply Prepare-OK, GS[T].ballot, dep, GS[T].status

committing status for a threshold amount of time. This
triggers the failure recovery process where some server
acts as the coordinator to try to commit T .

The recovery coordinator progresses through prepare,
accept and commit phases, as shown in Algorithm 6. Un-
like in the normal execution (Algorithm 1), the recovery
coordinator may repeat the pre-accept, prepare and ac-
cept phases many times using progressively higher ballot
numbers, to cope with contention that arises when multi-
ple servers try to recover the same transaction or when the
original coordinator has been falsely suspected of failure.
Therefore, when a server pre-accepts or accepts the de-
pendency list of T , it also remembers its corresponding

ballot number (lines 27 and 35).
In the prepare phase, the recovery coordinator picks

a unique ballot number b > 0 and sends it to all of T’s
participating servers.‡ Algorithm 7 shows how servers
handle prepares. If the status of T in the local graph
is committing, the server replies Tx-Done with T’s de-
pendency list. Otherwise, the server checks whether it
has seen a ballot number for T that is higher than that
included in the prepare message. If so, it rejects. Other-
wise, it replies Prepare-OK with T’s dependency list and
its corresponding ballot number. If the coordinator fails
to receive a majority quorum of Prepare-OKs for some
piece, it retries the prepare phase with a higher ballot
after a back-off.

The coordinator continues if it receives a majority
quorum (M) of Prepare-OKs for each piece. Next, it
must distinguish against several cases in order to decide
whether to proceed to the pre-accept or the accept phase
(lines 72-82). In one case (lines 75-77), the recovery
coordinator has received a majority quorum of Prepare-
OKs with the same dependency list for each piece and
T’s status is pre-accepted on any of servers. In this
case, transaction T could have succeeded on the fast path.
Thus, the recovery coordinator unions the resulting de-
pendencies and proceeds to the accept phase. This case
also illustrates why Janus must use a fast quorum F
containing all r server replicas. For any two conflicting
transactions that both require recovery, a recovery coordi-
nator is guaranteed to observe their dependencies only if
for arbitrary majority quorumsM,M ′ and fast quorums
F , F ′ we have (F ∩M) ∩ (F ′ ∩M ′) , ∅.
The pre-accept and accept phase used for recovery is

the same as in the normal execution (Algorithm 1) except
that both phases use the ballot number chosen in the
prepare phase. If the coordinator receives a majority
quorum of Accept-OKs, it proceeds to the commit phase.
Otherwise, it restarts in the prepare phase using a higher
ballot number.

The recovery coordinator attempts to commit transac-
tion T if possible, but may abandon T if the coordinator
cannot recover the inputs for T . This is possible if T’s
original coordinator fails to dispatch or sufficiently repli-
cate all pieces of T . A recovery coordinator abandons a
transaction T using the normal protocol except it sets the
abandon flag for T during the accept and commit phase
(lines 81-82). Abandoning a transaction this way ensures
that servers reach consensus on abandoning T even if the
the original coordinator can be falsely suspected of fail-
ure. During transaction execution, if a server encounters
a transaction T with the abandon flag set, it simply skips
the execution of T .

‡Unique server ids can be appended as low order bits to ensure unique
ballot numbers.

8

4 General Transactions
This section discusses how to extend Janus to handle
dependent pieces and limited forms of user aborts. Al-
though Janus avoids aborts completely for one-shot trans-
actions, our proposed extensions incur aborts when trans-
actions conflict.
Let a transaction’s keys be the set of data items that the

transaction needs to read or write. We classify general
transactions into two categories: 1) transactions whose
keys are known prior to execution, but the inputs of some
pieces are dependent on the execution of other pieces. 2)
transactions whose keys are not known beforehand, but
are dependent on the execution of certain pieces.

Transactions with pre-determined keys. For any
transaction T in this category, T’s set of participating
servers are known apriori. This allows the coordinator
to go through the pre-accept, accept phases to fix T’s
position in the serialization graph while deferring piece
execution. Suppose servers Si , Sj are responsible for the
data shards accessed by piece αi and α j (i < j) respec-
tively and α j’s inputs depend on the outputs of αi . In
this case, we extend the basic protocol to allow servers to
communicate with each other during transaction execu-
tion. Specifically, once server Sj is ready to execute α j ,
it sends a message to server Si to wait for the execution
of αi and fetch the corresponding outputs. We can use
the same technique to handle transactions with a certain
type of user-aborts. Specifically, the piece αi containing
user-aborts is not dependent on the execution of any other
piece that performs writes. To execute any piece α j of
the transaction, server Sj communicates with server Si to
find out αi’s execution status. If αi is aborted, then server
Sj skips the execution of α j .

Transactions with dependent keys. As an exam-
ple transaction of this type, consider transaction T(x):
y←Read(x); Write(y, ...) The key to be accessed by T’s sec-
ond piece is dependent on the value read by the first piece.
Thus, the coordinator cannot go through the usual phases
to fix T’s position in the serialization graph without exe-
cution. We support such a transaction by requiring users
to transform it to transactions in the first category using
a known technique [41]. In particular, any transaction
with dependent keys can be re-written into a combina-
tion of several read-only transactions that determine the
unknown keys and a conditional-write transaction that
performs writes if the read values match the input keys.
For example, the previous transaction T can be trans-
formed into two transactions, T1(x): y← Read(x); return

y; followed by T2(x,y): y′← Read(x); if y′,y {abort;} else

{Write(y, ...);} This technique is optimistic in that it turns
concurrency conflicts into user-level aborts. However, as
observed in [41], real-life OLTP workloads seldom in-

volve key-dependencies on frequently updated data and
thus would incur few user-level aborts due to conflicts.

5 Implementation

In order to evaluate Janus together with existing systems
and enable an apples-to-apples comparison, we built a
modular software framework that facilitates the construc-
tion and debugging of a variety of concurrency control
and consensus protocols efficiently.

Our software framework consists of 36,161 lines of
C++ code, excluding comments and blank lines. The
framework includes a custom RPC library, an in-memory
database, and several benchmarks. The RPC library uses
asynchronous socket I/O (epoll/kqueue). It can pas-
sively batch RPC messages to the same machine by read-
ing or writing multiple RPC messages with a single sys-
tem call whenever possible. The framework also provides
common library functions shared by most concurrency
control and consensus protocols, such as a multi-phase
coordinator, quorum computation, logical timestamps,
epochs, database locks, etc. By providing this common
functionality, the library simplifies the task of imple-
menting a new concurrency control or consensus pro-
tocol. For example, a TAPIR implementation required
only 1,209 lines of new code, and the Janus implementa-
tion required only 2,433 lines of new code. In addition to
TAPIR and Janus we also implemented 2PL+MultiPaxos
and OCC+MultiPaxos.

Our OCC implementation is the standard OCC with
2PC. It does not include the optimization to combine the
execution phase with the 2PC-prepare phase. Our 2PL
is different from conventional implementations in that it
dispatches pieces in parallel in order to minimize execu-
tion latency in the wide area. This increases the chance
for deadlocks significantly. We use thewound-wait proto-
col [37] (also used by Spanner [9]) to prevent deadlocks.
With a contended workload and parallel dispatch, the
wound-wait mechanism results in many false positives
for deadlocks. In both OCC and 2PL, the coordinator
does not make a unilateral decision to abort transactions.
TheMultiPaxos implementation inherits the common op-
timization of batchingmanymessages to and from leaders
from the passive batching mechanism in the RPC library.

Apart from the design described in Section 3, our
implementation of Janus also includes the garbage col-
lection mechanism to truncate the dependency graph as
transactions finish. We have not implemented Janus’s
coordinator failure recovery mechanism nor the exten-
sions to handle dependent pieces. Our implementations
of 2PL/OCC+MultiPaxos and TAPIR also do not include
failure recovery.

9

Oregon Ireland Seoul

Oregon 0.9 140 122
Ireland 0.7 243
Seoul 1.6

Table 2: Ping latency between EC2 datacenters (ms).

6 Evaluation
Our evaluation aims to understand the strength and limi-
tations of the consolidated approach of Janus. How does
it compare against conventional layered systems? How
does it compare with TAPIR’s unified approach, which
aborts under contention? The highlights include:

• In a single data center with no contention, Janus
achieves 5× the throughput of 2PL/OCC+MultiPaxos,
and 90% of TAPIR’s throughput in microbenchmarks.

• All systems’ throughput decrease as contention rises.
However, as Janus avoids aborts, its performance un-
der moderate or high contention is better than existing
systems.

• Wide-area latency leads to higher contention. Thus,
the relative performance difference between Janus and
the other systems is higher in multi-data-center exper-
iments than in single-data-center ones.

6.1 Experimental Setup
Testbed. We run all experiments onAmazonEC2 using
m4.large instance types. Each node has 2 virtual CPU
cores, 8GB RAM. For geo-replicated experiments, we
use 3 EC2 availability regions, us-west-2 (Oregon), ap-
northeast-2 (Seoul) and eu-west-1 (Ireland). The ping
latencies among these data centers are shown in Table 2.
Experimental parameters. We adopt the configura-
tion used by TAPIR [51] where a separate server replica
group handles each data shard. Each microbenchmark
uses 3 shards with a replication level of 3, resulting in
a total of 9 server machines being used. In this set-
ting, a majority quorum contains at least 2 servers and a
fast quorum must contain all 3 servers. When running
geo-replicated experiments, each server replica resides
in a different data center. The TPC-C benchmark uses
6 shards with a replication level of 3, for a total of 18
processes running on 9 server machines.
We use closed-loop clients: each client thread issues

one transaction at a time back-to-back. Aborted trans-
actions are retried for up to 20 attempts. We vary the
injected load by changing the number of clients. We run
client processes on a separate set of EC2 instances than
servers. In the geo-replicated setting, experiments of 2PL
and OCC co-locate the clients in the datacenter contain-
ing the underlying MultiPaxos leader. Clients of Janus

 0

 40

 80

 120

 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t
(1

0
3
 t
x
n
/s

)

Zipf Coefficient

2PL
Janus

OCC
Tapir

(a) Cluster Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

C
o
m

m
it
 R

a
te

Zipf Coefficient

2PL
Janus

OCC
Tapir

(b) Commit Rates

Figure 3: Single datacenter performance with in-
creasing contention as controlled by the Zipf coeffi-
cient.

and Tapir are spread evenly across the three datacenters.
We use enough EC2 machines such that clients are not
bottlenecked.

Other measurement details. Each of our experiment
lasts 30 seconds, with the first 7.5 and last 7.5 seconds
excluded from results to avoid start-up, cool-down, and
potential client synchronization artifacts. For each set
of experiments, we report the throughput, 90th percentile
latency, and commit rate. The system throughput is cal-
culated as the number of committed transactions divided
by the measurement duration and is expressed in trans-
actions per second (tps). We calculate the latency of a
transaction as the amount of time taken for it to commit,
including retries. A transaction that is given up after 20
retries is considered to have infinite latency. We calculate
the commit rate as the total number of committed trans-
actions divided by the total number of commit attempts
(including retries).

Calibrating TAPIR’s performance. Because we re-
implemented the TAPIR protocol using a different code
base, we calibrated our results by running the most basic
experiment (one-key read-modify-write transactions), as
presented in Figure 7 of TAPIR’s technical report [49].
The experiments run within a single data center with only
one shard. The keys are chosen uniformly randomly. Our
TAPIR implementation (running on EC2) achieves a peak
throughput of ∼165.83K tps, which is much higher than

10

the amount (∼8K tps) reported for Google VMs [49].
We also did the experiment corresponding to Figure 13
of [51] and the results show a similar abort rate per-
formance for TAPIR and OCC (TAPIR’s abort rate is
an order of magnitude lower than OCC with lower zipf
coefficients). Therefore, we believe our TAPIR imple-
mentation is representative.

6.2 Microbenchmark
Workload. In the microbenchmark, each transaction
performs 3 read-write access on different shards by in-
crementing 3 randomly chosen key-value pairs. We pre-
populate each shard with 1 million key-value pairs before
starting the experiments. We vary the amount of con-
tention in the system by choosing keys according to a zipf
distribution with a varying zipf coefficient. The larger
the zipf coefficient, the higher the contention. This type
of microbenchmark is commonly used in evaluations of
transactional systems [9, 51].

Single data center (low contention). Figure 3 shows
the single data center performance of different systems
when the zipf coefficient increases from 0.5 to 1.0. Zipf
coefficients of 0.0∼0.5 are excluded because they have
negligble contention and similar performance to zipf=0.5.
In these experiments, we use 900 clients to inject load.

The number of clients is chosen to be on the “knee”
of the latency-throughput curve of TAPIR for a specific
zipf value (0.5). In other words, using more than 900
clients results in significantly increased latency with only
small throughput improvements. With zipf coefficients
of 0.5∼0.6, the system experiences negligible amounts of
contention. As Figure 3b shows, the commit rates across
all systems are almost 1 with zipf coefficient 0.5.
Both TAPIR and Janus achieve much higher through-

put than 2PL/OCC+MultiPaxos. As a Paxos leader needs
to handle much more communication load (>3×) than
non-leader server replicas, 2PL/OCC’s performance is
bottlenecked by Paxos leaders, which are only one-third
of all 9 server machines.

Single data center (moderate to high contention). As
the zipf value varies from 0.6 to 1.0, the amount of con-
tention in the workload rises. As seen in Figure 3b, the
commit rates of TAPIR, 2PL and OCC decrease quickly
as the zipf value increases from 0.6 to 1.0. At first glance,
it is surprising that 2PL’s commit rate is no higher than
OCC’s. This is because our 2PL implementation dis-
patches pieces in parallel. This combined with the large
amounts of false positives induced by deadlock detection,
makes locking ineffective. By contrast, Janus does not
incur any aborts and maintains a 100% commit rate. In-
creasing amounts of aborts result in significantly lower
throughput for TAPIR, 2PL and OCC. Although Janus

 0

 20

 40

 60

 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t
(1

0
3
 t
x
n
/s

)

Zipf Coefficient

2PL
Janus

OCC
Tapir

(a) Cluster Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

C
o
m

m
it
 R

a
te

Zipf Coefficient

2PL
Janus

OCC
Tapir

(b) Commit Rates

Figure 4: Geo-replicated performance with increas-
ing contention as controlled by the Zipf coefficient.

does not have aborts, its throughput also drops because
the size of the dependency graph that is being maintained
and exchanged grows with the amount of the contention.
Nevertheless, the overhead of graph computation is much
less than the cost of aborts/retries, which allows Janus to
outperform existing systems. At zipf=0.9, the through-
put of Janus (55.41K tps) is 3.7× that of TAPIR (14.91K
tps). The corresponding 90-percentile latency for Janus
and TAPIR is 24.65ms and 28.90ms, respectively. The
latter is higher due to repeated retries.

Multiple data centers (moderate to high contention).
We move on to experiments that replicate data across
multiple data centers. In this set of experiments, we use
10800 clients to inject load, compared to 900 for in the
single data center setting. As the wide-area communica-
tion latency is more than an order of magnitude larger,
we have to use many more concurrent requests in order to
achieve high throughput. Thus, the amount of contention
for a given zipf value is much higher in multi-datacenter
experiments than that of single-data-center experiments.
As we can see in Figure 4b, at zipf=0.5, the commit rate
is only 0.37 for TAPIR. This causes the throughput of
TAPIR to be lower than Janus at zipf=0.5 (Figure 4a).
At larger zipf values, e.g., zipf=0.9, the throughput of
Janus drops to 43.51K tps, compared to 3.95K tps for
TAPIR, and ∼1085 tps for 2PL and OCC. As Figure 4b
shows, TAPIR’s commit rate is slightly lower than that
of 2PL/OCC. Interference during replication, apart from

11

10
0

10
1

10
2

10
3

10
4

 1 10 100 1000

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)

Clients

2PL
Janus

OCC
Tapir

(a) Cluster Throughput

 0

 200

 400

 600

 800

 1000

 1 10 100 1000

L
a
te

n
c
y
 (

m
s
)

Clients

2PL
Janus

OCC
Tapir

(b) 90% Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
o
m

m
it
 R

a
te

Clients

2PL
Janus

OCC
Tapir

(c) Commit Rates

Figure 5: Performance in the single datacenter setting for the TPC-C benchmark with increasing load and
contention as controlled by the number of clients per partition.

10
0

10
1

10
2

10
3

10
4

 1 10 100 1000 10000

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)

Clients

2PL
Janus

OCC
Tapir

(a) Cluster Throughput

 0

 200

 400

 600

 800

 1000

 1 10 100 1000 10000

L
a
te

n
c
y
 (

m
s
)

Clients

2PL
Janus

OCC
Tapir

(b) 90% Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
o
m

m
it
 R

a
te

Clients

2PL
Janus

OCC
Tapir

(c) Commit Rates

Figure 6: Performance in the geo-replicated setting for the TPC-C benchmark with increasing load and
contention as controlled by the number of clients per partition.

aborts due to transaction conflicts, may also cause TAPIR
to retry the commit.

6.3 TPC-C

new-order payment order-status delivery stock-level

ratio 43.65% 44.05% 4.13% 3.99% 4.18%

Table 3: TPC-C mix ratio in a Janus trial.

Workload. As the most commonly accepted bench-
mark for testing OLTP systems, TPC-C has 9 tables and
92 columns in total. It has five transaction types, three of
which are read-write transactions and two are read-only
transactions. Table 3 shows a commit transaction ratio
in one of our trials. In this test we use 6 shards each
replicated in 3 data centers. The workload is sharded by
warehouse; each shard contains 1 warehouse; each ware-
house contains 10 districts, following the specification.
Because each new-order transaction needs to do a read-
modify-write operation on the next-order-id that is unique
in a district, this workload exposes very high contention
with increasing numbers of clients.

Single datacenter setting. Figure 5 shows the single
data center performance of different systems when the
number of clients is increased. As the number of clients
increases, the throughput of Janus climbs until it saturates
the servers’ CPU, and then stabilizes at 5.78K tps. On
the other hand, the throughput of other systems will first
climb, and then drop due to high abort rates incurred as
contention increases. TAPIR’s the throughput peaks at
560 tps; The peak throughput for for 2PL/OCC is lower
than 595/324 tps. Because TAPIR can abort and retry
more quickly than OCC, its commit rate becomes lower
than OCC as the contention increases. Because of the
massive number of aborts, the 90-percentile latency for
2PL/OCC/TAPIR are more than several seconds when
the number of clients increases; by contrast, the latency
of Janus remains relatively low (<400ms). The latency of
Janus increases with the number of clients due to as more
outstanding transactions result in increased queueing.

Multi-data center setting. When replicating data
across multiple data centers, more clients are needed to
saturate the servers. As shown in Figure 6, the throughput
of Janus (5.7K tps) is significantly higher than the other
protocols. In this setup, the other systems show the same
trend as in single data-center but the peak throughput be-

12

comes lower because the amount of contention increases
dramatically with increased number of clients. TAPIR’s
commit rate is lower than OCC’s when there are ≥ 100
clients because the wide-area setting leads to more aborts
for its inconsistent replication.
Figure 6b shows the 90-percentile latency. When the

number of clients is <= 100, the experiments use only
a single client machine located in the Oregon data cen-
ter. When the number of clients > 100, the clients are
spread across all three data centers. As seen in Figure 6b,
when the contention is low (<10 clients), the latency of
TAPIR and Janus is low (less than 150ms) because both
protocols can commit in one cross-data center roundtrip
from Oregon. By contrast, the latency of 2PL/OCC is
much more (230ms) as their commits require 2 cross
data center roundtrips. In our experiments, all leaders
of the underlying MultiPaxos happen to be co-located
in the same data center as the clients. Thus, 2PL/OCC
both require only one cross-data center roundtrip to com-
plete the 2PC prepare phase and another roundtrip for the
commit phase as our implementation of 2PL/OCC only
returns to clients after the commit to reduce contention.
As contention rises due to increased number of clients,
the 90-percentile latency of 2PL/OCC/TAPIR increases
quickly to tens of seconds. The latency of Janus also
rises due to increased overhead in graph exchange and
computation at higher levels of contention. Nevertheless,
Janus achieves a decent 90-percentile latency (<900ms)
as the number of clients increases to 10,000.

7 Related Work
We review related work in fault-tolerant replication, geo-
replication, and concurrency control.

Fault-tolerant replication. The replicated state ma-
chine (RSM) approach [17, 38] enables multiple ma-
chines to maintain the same state through deterministic
execution of the same commands and can be used tomask
the failure of individual machines. Paxos [18] and view-
stamped replication [24, 33] showed it was possible to
implement RSMs that are always safe and remain live
when f or fewer out of 2 f + 1 total machines fail. Paxos
and viewstamped replication solve consensus for the se-
ries of commands the RSM executes. Fast Paxos [21]
reduced the latency for consensus by having client send
commands directly to replicas instead of a through a dis-
tinguished proposer. Generalized Paxos [20] builds on
Fast Paxos by further enabling commands to commit out
of order when they do not interfere, i.e., conflict. Janus
uses this insight from Generalized Paxos to avoid speci-
fying an order for non-conflicting transactions.
Mencius [29] showed how to reach consensus with

low latency under low load and high throughput under

high load in a geo-replicated setting by efficiently round-
robining leader duties between replicas. Speculative
Paxos [36] can achieve consensus in a single round trip
by exploiting a co-designed datacenter network for con-
sistent ordering. EPaxos [30] is the consensus protocol
most related to our work. EPaxos builds onMencius, Fast
Paxos, and Generalized Paxos to achieve (near-)optimal
commit latency in the wide-area, high throughput, and
tolerance to slow nodes. EPaxos’s use of dependency
graphs to dynamically order commands based on their
arrival order at different replicas inspired Janus’s depen-
dency tracking for replication.

Janus addresses a different problem than RSM because
it provides fault tolerance and scalability to many shards.
RSMs are designed to replicate a single shard and when
used across shards they are still limited to the throughput
of a single machine.

Geo-replication. Many recent systems have been de-
signed for the geo-replicated setting with varying degrees
of consistency guarantees and transaction support. Dy-
namo [11], PNUTS [8], and TAO [6] provide eventual
consistency and avoid wide-area messages for most oper-
ations. COPS [26] and Eiger [27] provide causal consis-
tency, read-only transactions, and Eiger provides write-
only transactions while always avoiding wide-area mes-
sages. Walter [39] and Lynx [52] often avoid wide-area
messages and provide general transactions with parallel
snapshot isolation and serializability respectively. All of
these systems will typically provide lower latency than
Janus because they made a different choice in the funda-
mental trade off between latency and consistency [5, 23].
Janus is on the other side of that divide and provides strict
serializability and general transactions.

Concurrency control. Fault tolerant, scalable systems
typically layer a concurrency control protocol on top of a
replication protocol. Sinfonia [3] piggybacks OCC into
2PC over primary-backup replication. Percolator [35]
also uses OCC over primary-backup replication. Span-
ner [9] uses 2PL with wound wait over Multi-Paxos and
inspired our 2PL experimental baseline.

CLOCC [2, 25] using fine-grained optimistic concur-
rency control using loosely synchronized clocks over
viewstamped replication. Granola [10] is optimized for
single shard transactions, but also includes a global trans-
action protocol that uses a custom 2PC over viewstamped
replication. Calvin [42] uses a sequencing layer and 2PL
over Paxos. Salt [47] is a concurrency control protocol for
mixing acid and base transactions that inherits MySQL
Cluster’s chain replication [44]. Salt’s successor, Callas,
introduces modular concurrency control [48] that enables
different types of concurrency control for different parts
of a workload.

Replicated Commit [28] executes Paxos over 2PC in-

13

stead of the typical 2PC over Paxos to reduce wide-area
messages. Rococo [31] is a dependency graph based con-
currency control protocol over Paxos that avoids aborts
by reordering conflicting transactions. Rococo’s protocol
inspired our use of dependency tracking for concurrency
control. All of these systems layer a concurrency con-
trol protocol over a separate replication protocol, which
incurs coordination twice in serial.
MDCC [16] and TAPIR [49, 50, 51] are the most re-

lated systems and we have discussed them extensively
throughout the paper. Their fast fault tolerant transaction
commits under low contention inspired us to work on
fast commits under all levels of contention, which is our
biggest distinction from them.

8 Conclusion
We presented the design, implementation, and evalua-
tion of Janus, a new protocol for fault tolerant distributed
transactions that are one-shot and written as stored pro-
cedures. The key insight behind Janus is that the coordi-
nation required for concurrency control and consensus is
highly similar. We exploit this insight by tracking con-
flicting arrival orders of both different transactions across
shards and the same transaction within a shard using a
single dependency graph. This enables Janus to commit
in a single round trip when there is no contention. When
there is contention Janus is able to commit by having
all shards of a transaction reach consensus on its depen-
dencies and then breaking cycles through deterministic
reordering before execution. This enables Janus to pro-
vide higher throughput and lower latency than the state
of the art when workloads have moderate to high skew,
are geo-replicated, and are realistically complex.

Acknowledgments
The work is supported by NSF grants CNS-1514422 and
CNS-1218117 as well as AFOSR grant FA9550-15-1-
0302. Lamont Nelson is also supported by an NSF grad-
uate fellowship. We thankMichaelWalfish for helping us
clarify the design of Janus and Frank Dabek for reading
an early draft. We thank our shepherd, Dan Ports, and the
anonymous reviewers of the OSDI program committee
for their helpful comments.

References
[1] TPC-C Benchmark. http://www.tpc.org/tpcc/.
[2] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Ef-

ficient optimistic concurrency control using loosely syn-

chronized clocks. In Proceedings of ACM International
Conference on Management of Data (SIGMOD), 1995.

[3] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In Proceedings of ACM Sym-
posium on Operating Systems Principles (SOSP), 2007.

[4] Amazon. Cross-Region Replication Using DynamoDB
Streams. http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/
Streams.CrossRegionRepl.html, 2016.

[5] H. Attiya and J. L. Welch. Sequential consistency versus
linearizability. ACM Transactions on Computer Systems
(TOCS), 12(2), 1994.

[6] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. TAO: Facebook’s distributed data store
for the social graph. In Proceedings of USENIX Confer-
ence on Annual Technical Conference (ATC), 2013.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
In Proceedings of USENIX Symposium on Opearting Sys-
tems Design and Implementation (OSDI), 2006.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. Proceedings of International Conference on
Very Large Data Bases (VLDB), 2008.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s globally dis-
tributed database. In Proceedings of USENIX Sympo-
sium on Opearting Systems Design and Implementation
(OSDI), 2012.

[10] J. Cowling and B. Liskov. Granola: low-overhead dis-
tributed transaction coordination. In Proceedings of
USENIX Conference on Annual Technical Conference
(ATC), 2012.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P.Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proceedings of ACM Symposium on Oper-
ating Systems Principles (SOSP), 2007.

[12] H. Garcia-Molina and K. Salem. Main memory database
systems: An overview. Knowledge andData Engineering,
IEEE Transactions on, 4(6):509–516, 1992.

[13] H. Garcia-Molina, R. J. Lipton, and J. Valdes. A massive
memory machine. Computers, IEEE Transactions on, 100
(5):391–399, 1984.

[14] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems (TOPLAS), 12
(3):463–492, 1990.

[15] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,

14

http://www.tpc.org/tpcc/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.CrossRegionRepl.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.CrossRegionRepl.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.CrossRegionRepl.html

Y. Zhang, et al. H-store: a high-performance, distributed
main memory transaction processing system. In Pro-
ceedings of International Conference on Very Large Data
Bases (VLDB), 2008.

[16] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-data center consistency. In
Proceedings of ACM European Conference on Computer
Systems (EuroSys), 2013.

[17] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 1978.

[18] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems (TOCS), 16(2):133–169, 1998.

[19] L. Lamport. Paxos made simple. ACM Sigact News, 32
(4):18–25, 2001.

[20] L. Lamport. Generalized consensus and Paxos. Techni-
cal report, Technical Report MSR-TR-2005-33, Microsoft
Research, 2005.

[21] L. Lamport. Fast Paxos. Distributed Computing, 19(2):
79–103, October 2006.

[22] K. Li and J. F. Naughton. Multiprocessor main memory
transaction processing. In Proceedings of the first interna-
tional symposium onDatabases in parallel and distributed
systems, 2000.

[23] R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared
memory. Technical Report TR-180-88, Princeton Univ.,
Dept. Comp. Sci., 1988.

[24] B. Liskov and J. Cowling. Viewstamped replication revis-
ited. Technical report, MIT-CSAIL-TR-2012-021, MIT,
2012.

[25] B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing
persistent objects in distributed systems. InECOOP, 1999.

[26] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Don’t settle for eventual: scalable causal con-
sistency for wide-area storage with COPS. In Proceed-
ings of ACM Symposium on Operating Systems Principles
(SOSP), 2011.

[27] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Stronger semantics for low-latency geo-replicated
storage. In Proceedings of USENIX Conference on
Networked Systems Design and Implementation (NSDI),
2013.

[28] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and
A. El Abbadi. Low-latency multi-datacenter databases
using replicated commit. In Proceedings of International
Conference on Very Large Data Bases (VLDB), 2013.

[29] Y.Mao, F. P. Junqueira, and K.Marzullo. Mencius: build-
ing efficient replicated state machines for wans. In Pro-
ceedings of USENIX Symposium on Opearting Systems
Design and Implementation (OSDI), 2008.

[30] I. Moraru, D. G. Andersen, and M. Kaminsky. There is
more consensus in egalitarian parliaments. In Proceed-
ings of ACM Symposium on Operating Systems Principles
(SOSP), 2013.

[31] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distributed transactions. In Pro-

ceedings of USENIX Symposium on Opearting Systems
Design and Implementation (OSDI), 2014.

[32] S. Mu, L. Nelson, , W. Lloyd, and J. Li. Consolidat-
ing concurrency control and consensus for commits under
conflicts. Technical Report TR2016-983, New York Uni-
versity, Courant Institute of Mathematical Sciences, 2016.

[33] B. M. Oki and B. H. Liskov. Viewstamped replication:
A new primary copy method to support highly-available
distributed systems. In Proceedings of ACM Symposium
on Principles of Distributed Computing (PODC), 1988.

[34] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4), 1979.

[35] D. Peng and F. Dabek. Large-scale incremental processing
using distributed transactions and notifications. In Pro-
ceedings of USENIX Symposium on Opearting Systems
Design and Implementation (OSDI), 2010.

[36] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishna-
murthy. Designing distributed systems using approximate
synchrony in data center networks. In Proceedings of
USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2015.

[37] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II.
System level concurrency control for distributed database
systems. ACMTransactions onDatabase Systems (TODS),
3(2):178–198, 1978.

[38] F. B. Schneider. Implementing fault-tolerant services us-
ing the statemachine approach: a tutorial. ACMComputer
Surveys, 22(4), Dec. 1990.

[39] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Trans-
actional storage for geo-replicated systems. In Proceed-
ings of ACM Symposium on Operating Systems Principles
(SOSP), 2011.

[40] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architec-
tural era:(it’s time for a complete rewrite). In Proceedings
of International Conference on Very Large Data Bases
(VLDB), 2007.

[41] A. Thomson and D. J. Abadi. The case for determin-
ism in database systems. In Proceedings of International
Conference on Very Large Data Bases (VLDB), 2010.

[42] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: fast distributed transactions
for partitioned database systems. In Proceedings of ACM
International Conference on Management of Data (SIG-
MOD), 2012.

[43] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2013.

[44] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Proceed-
ings of USENIX Symposium on Opearting Systems Design
and Implementation (OSDI), 2004.

[45] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of Concur-
rency Control and Recovery. Morgan Kaufmann, 2001.

15

[46] A. Whitney, D. Shasha, and S. Apter. High volume trans-
action processing without concurrency control, two phase
commit, sql or C++. In Seventh InternationalWorkshop on
High Performance Transaction Systems, Asilomar, 1997.

[47] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh,
L. Alvisi, and P. Mahajan. Salt: Combining ACID
and BASE in a distributed batabase. In Proceedings of
USENIX Symposium on Opearting Systems Design and
Implementation (OSDI), 2014.

[48] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and
Y. Wang. High-performance ACID via modular concur-
rency control. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP), 2015.

[49] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. Ports. Building consistent transactions with in-
consistent replication. Technical report, Technical Report
UW-CSE-2014-12-01, University of Washington, 2014.

[50] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. Ports. Building consistent transactions with
inconsistent replication (extended version). Technical re-
port, Technical Report UW-CSE-2014-12-01 v2, Univer-
sity of Washington, 2015.

[51] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. K. Ports. Building consistent transactions with
inconsistent replication. In Proceedings of ACM Sympo-
sium on Operating Systems Principles (SOSP), 2015.

[52] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera,
and J. Li. Transaction chains: achieving serializability
with low latency in geo-distributed storage systems. In
Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2013.

[53] S. Mu. Janus paper revision history. http://mpaxos.
com/pub/janus-history.txt.

16

http://mpaxos.com/pub/janus-history.txt
http://mpaxos.com/pub/janus-history.txt

	Introduction
	Overview
	System Setup
	Background and Motivation
	A Unified Approach to Concurrency Control and Consensus

	Design
	Basic Protocol
	Handling Contention Without Aborts
	Handling Coordinator Failure

	General Transactions
	Implementation
	Evaluation
	Experimental Setup
	Microbenchmark
	TPC-C

	Related Work
	Conclusion

