
Unblocking the Internet: Social networks foil censors

NYU Technical Report TR2008-918

Yair Sovran, Jinyang Li, Lakshminarayanan Subramanian

Computer Science Department, New York University

http://www.kspro.org

Abstract

Many countries and administrative domains exploit control over their communication infrastructure

to censor online content. This paper presents the design, implementation and evaluation of Kaleidoscope,

a peer-to-peer system of relays that enables users within a censored domain to access blocked content.

The main challenge facing Kaleidoscope is to resist the censor’s efforts to block the circumvention

system itself. Kaleidoscope achieves blocking-resilience using restricted service discovery that allows

each user to discover a small set of unblocked relays while only exposing a small fraction of relays

to the censor. To restrict service discovery, Kaleidoscope leverages a trust network where links reflects

real-world social relationships among users and uses a limited advertisement protocol based on random

routes to disseminate relay addresses along the trust network; the number of nodes reached by a relay

advertisement should ideally be inversely proportional to the maximum fraction of infiltration and is

independent of the network size. To increase service availability in large networks with few exit relay

nodes, Kaleidoscope forwards the actual data traffic across multiple relay hops without risking exposure

of exit relays.

Using detailed analysis and simulations, we show that Kaleidoscope provides > 90% service avail-

ability even under substantial infiltration (close to 0.5% of edges) and when only 30% of the relay

nodes are online. We have implemented and deployed our system on a small scale serving over 100,000

requests to 40 censored users (relatively small user base to realize Kaleidoscope’s anti-blocking guaran-

tees) spread across different countries and administrative domains over a 6-month period.

1 Introduction

Internet censorship is widely prevalent in many parts of the world where governments and administrative

domains censor the network access of users inside the domain [4]. While censorship of clearly objection-

able content such as child pornography is acceptable and typically accompanied by real-world punish-

ment for viewing such content, often a large volume of harmless content is censored due to poor traffic

blocking policies (Figure 1). In many cases, even popular sites such as YouTube [35], Wikipedia [5] and

Google [2] have been blocked in some regions.

The fundamental problem with a traffic-blocking based censorship system is that it is almost im-

possible to configure precise router policies to filter only objectionable content. For instance, Thailand

and Pakistan had blocked the entire YouTube site just to prevent access to one offensive video clip [35].

The high collateral damage caused by imprecise and coarse-grained blocking policies motivates the need

for a censorship circumvention system for accessing non-objectionable content (lower-right quadrant in

Figure 1).

This paper presents the design, implementation, evaluation and deployment experiences of Kalei-

doscope, a practical and decentralized circumvention system that enhances availability to blocked con-

tent while making it difficult for the censor to defeat the system. Existing censors actively try to block

any popular system with a centralized component that circumvents their “firewalls”, as witnessed by

the blocking of SafeWeb [7] and Anonymizer [1]. Our design is completely decentralized to maximize

availability but not privacy. Users concerned with privacy need to combine our solution with an exist-

ing privacy preserving anonymity system [19]. Kaleidoscope is also not designed for the case where

1

traffic blocking

re
a
l
w
o
rl
d
 p
u
n
is
h
m
e
n
t

Germany

Nazi

memorabilia

China

Flickr, Wikipedia,

Youtube, NYTimes,

bulletin boards, ...

Thailand

Youtube

China

FaLunGong

propaganda

NO YES

N
O

Y
E
S

Brazil

Youtube

US

child pornography

Figure 1: A classification of censored content. Accessing illegal materials results in real world punishment. For a

large class of blocked content in the lower right quadrant, there is little risk of real world punishment for viewing.

the censor may persecute or harass users for viewing blocked content or using (or participating in) a

circumvention system.

Kaleidoscope is a peer-to-peer circumvention system that uses a network of relay nodes (both inside

and outside the censored domain) to help users inside the censored domain forward traffic outside the

censored domain to access otherwise blocked websites. A subset of relays outside the censored domain

serves as exit points (i.e. web proxies) to directly forward unencrypted traffic to websites. All traffic

between nodes in Kaleidoscope is encrypted to thwart deep packet inspection-based traffic blocking. In

addition, Kaleidoscope assumes that the number of relays outside the censored domain is large enough to

avoid detection of relays using volume-based traffic analysis. However, we do not consider timing-based

traffic analysis in the current design.

The design of Kaleidoscope reconciles the tension between (1) helping users learn about relays and

forward their traffic to exit points and (2) preventing censors from blocking the relay system (by infiltrat-

ing the system to learn relay nodes). To achieve this objective, Kaleidoscope performs restricted service

discovery [18, 22] that enables each user to discover a small number of relays; this restricts the censor’s

ability to discover relays.

Kaleidoscope achieves restricted service discovery using three main ideas. First, it disseminates relay

information using a trust network whose links reflect real world social relationships among users. The

use of a trust network prevents a censor from joining the network at arbitrarily many vantage points

since doing so requires many trust links with honest users which are costly to obtain and maintain.

Second, Kaleidoscope uses a limited advertisement protocol based on short random routes over the trust

network [40]. This protocol disseminates relays’ addresses in a way that restricts the number of users

to which each relay node is exposed. We show that to handle a maximum fraction of infiltration, f ,

the number of nodes reached by a relay advertisement should be at most 2/f , which is independent

of the network size. Third, to achieve good service availability in large networks (≫ 2/f nodes) with

few exit points, Kaleidoscope uses multi-hop relay paths to forward traffic to exit points. Multi-hop

forwarding in Kaleidoscope dramatically increases the service availability without risking exposure of

the exit points to the censor. Kaleidoscope’s multihop traffic forwarding differs from the forwarding

mechanism in existing privacy-preserving anonymity systems such as Tor [19] because Kaleidoscope

limits the exposure of relays whilst Tor obfuscates the origin of a traffic flow.

We demonstrate the effectiveness of Kaleidoscope using a real-world deployment as well as detailed

analysis and evaluations using online social network traces. Our evaluations using online social network

traces show that Kaleidoscope provides > 90% service availability even under substantial infiltration

(close to 0.5% of edges) and when only 30% of the relay nodes are online. Our implementation boot-

straps itself in a decentralized fashion and leaves no obvious network fingerprints. Our deployment has

served over 100,000 web requests to a small community of 40 users from different countries with known

censorship practices over a six-month period. Although our deployed network is too small to provide

real anti-blocking guarantees, it has been used quite extensively by our users to access blocked content.

2

D: client/relayA: exit point

blocked website
censored domain

C: client/relayB: relay

Figure 2: Routers within the censored domain drop user D’s packets to the blocked website. All users can operate

their nodes as relays and users outside the censored domain can operate exit points to forward unencrypted web traffic

to blocked websites. The double lines correspond to encrypted communication channels while the single lines refer to

unencrypted web traffic.

2 Problem Statement

This section discusses the general problem setting of circumventing traffic blocking censors (Section 2.1),

our threat model and assumptions (Section 2.2) and the design guidelines for Kaleidoscope (Section 2.3).

2.1 Problem setting

We consider a censored domain where the censor controls all routers within that domain, as illustrated

in Figure 2. This censor deploys filtering policies on those routers to prevent users within the censored

domain from accessing selected content outside the censored domain. In the example of Figure 2, routers

in the censored domain are configured to drop all packets whose destination IP address belongs to the

blocked website. In addition to dropping packets based on IP addresses, routers can sabotage commu-

nication based on deep packet inspection. In particular, routers inside the censored domain reset TCP

connections if unwanted keywords appear in the packet payload [16, 17] and also pollute DNS replies

corresponding to unwanted domains.

Our proposed circumvention system, Kaleidoscope, aims to relay otherwise blocked web traffic out-

side the censored domain. As we are defending against a realistic censor that does not persecute individ-

ual users, a user inside the censored domain can install our software to forward her traffic via encrypted

channels to other relay nodes. All users (both within and outside the censored domain) operate their

nodes as relay nodes for others. A subset of users outside the censored domain also operates their nodes

as exit points (i.e. web proxies) to forward the actual unencrypted web traffic to blocked websites; in

general, not every relay node outside the censored domain may be willing to act as an exit point [19].

Relaying encrypted traffic across multiple Kaleidoscope nodes is beneficial as it allows an exit point to

serve a larger population of users inside the censored domain without directly revealing its network ad-

dress to them. For example in Figure 2, exit point A can indirectly serve user D via B without revealing

its network address to D. Since forwarded traffic among Kaleidoscope users is encrypted, routers cannot

perform keyword-based dropping. Furthermore, exit points perform DNS queries so routers inside the

censored domain cannot disrupt DNS.

2.2 Threat model and assumptions

Our threat model is motivated by practical assumptions and threats. We assume that the censor will

attempt to block the circumvention system but not target individual users. We must realize that since the

censor controls the underlying communication infrastructure, any attempt to elude the most determined

censor’s attempts to block a circumvention system is futile: a censor could always deploy the “nuclear

option” of pulling the plug on all external traffic (e.g. the governing junta in Burma) or drop all encrypted

traffic to prevent evasions of content filters or white-list the set of allowed outside nodes.

We consider three types of attacks by the censor:

First, the censor can easily disable any centralized component in a circumvention system by block-

ing either the IP address or DNS name of the centralized component. As many existing circumvention

3

systems use a centralized web site to inform users of web proxies located outside the censored domain,

they are vulnerable to this attack. For example, Anonymizer [1] and SafeWeb [7] were disabled this way

in China.

Second, the censor can pose as a legitimate user in order to discover as many relays located outside

the censored domain as possible and to block them. It is easy to launch such attacks against systems that

publish the identities of all nodes. For example, the Tor anonymity network allows any user to discover

all relay servers [19]. As a result, the Chinese censor has recently managed to block 80% of all Tor

servers [11].

Third, the censor could also pose as a legitimate exit point or web site to attract traffic from many

unsuspecting relays or users in order to track them. Node tracking in peer-to-peer systems already exists

in the wild. A recent study of the Gnutella network has shown that a large number of peers are tracked

by a few nodes that possibly collude with the RIAA [10]. Unlike other attacks, it is not clear what

damage a censor can inflict upon the circumvention system as a result of user tracking. The censor could

theoretically cut off the entire Internet connection of exposed users.

Our system is not designed to defend against sophisticated traffic analysis or timing attacks. We

explicitly assume that simple traffic analysis based on traffic volume cannot learn of specific trust links

or relay nodes within Kaleidoscope. This assumption typically holds if the cut-size of trust links that

cross the censored domain is high and the volume of encrypted traffic across any single trust link is

relatively small and comparable to the volume of encrypted traffic across many other communicating

host-pairs. Although we cannot design a perfect system that remains undetected by sophisticated traffic

and timing analysis, forcing a censor to implement more expensive countermeasures is still useful. If the

censor must deploy strategies that affect legitimate traffic (blocking encrypted traffic also affects online

commerce, for instance) or to undertake increasingly complex analysis schemes, the censor is likely to

judge that the gain to be had in blocking Kaleidoscope does not justify the required cost (a cost that our

system increases).

2.3 Design goals

The central challenge of a relay-based circumvention system is to help users discover relays and exit

points while avoiding exposing them to the censor, even when the censor is able to pose as a legitimate

user or exit point. Based on practical attacks on existing systems, we derive the following essential design

requirements for blocking-resilient circumvention system:

1. Decentralization. A fully decentralized system foils any attempt to bring down the system by

blocking its centralized component.

2. Limited relay exposure. The system must partition knowledge of all relays (including exit points)

among users: if any user can learn the identity of every relay, then so too can the censor, who will

block all of the relays. Since a decentralized system lacks strong user identity, the system must

also defend against Sybil attacks [20], where a censor creates arbitrarily many user identities to try

to discover as many different relays as possible.

3. Limited user exposure. The system must restrict each relay or exit point to serving (hence, learning)

a small number of relays or users, otherwise, the censor can pose as a legitimate exit point to serve

and track many users. Unlike the first two requirements, limiting user exposure is not strictly

necessary for the health of the system, but rather a precautionary defense to prevent the censor

from being able to track too many users.

A circumvention system meeting the above three requirements offers restricted service discovery

for users. When under attack, such a system offers degraded service, i.e. not all users have access to

some working relays outside the censored domain. We do not expect the system to guarantee service to

all users: the censor will inevitably join the system and block some relays, disrupting service for some

legitimate users. These disrupted users, unfortunately, must not be allowed to learn the identity of new

relays, since if they could always learn the addresses of new relays, then so could the censor. Repeating

this process would allow the censor to block all relays in the system.

4

N1

N2

N6

N4

censored domain

exit point

to blocked

sites

known relays:

N2, N4

known relays:

N1, N4

Figure 3: Kaleidoscope provides exit service using relay advertisement and multi-hop traffic forwarding. Gray cir-

cles denote relays and N1 is an exit point. N6 learns of relays N2, N4 and N2 learns of N1,N4 as a result of relay

advertisement. The thick grey lines show the multi-hop path taken by N6’s data traffic.

3 Basic Approach

Figure 2 describes the basic setting of Kaleidoscope that comprises of three entities: end-users, relay

nodes and exit points. At the heart of its design, Kaleidoscope relies on a trust network where links

reflect real world social relationships between participating users. It is also important to have a sizeable

user population spread both within and across the censored domain; if this number is small, the censor

can easily block all communication to these nodes upon detecting them. All nodes participating in the

Kaleidoscope trust network by default act as relay nodes and a subset of relay nodes outside the censored

domain volunteers to act as exit points (like proxies). Relay nodes use a limited advertisement protocol to

advertise their presence and discover other relay nodes. Once relay nodes and exit points discover each

other, they directly communicate with each other to set up encrypted channels for forwarding the actual

data traffic. Relay nodes forward traffic between end-users and exit points and these routing paths in the

peer-to-peer relay network need not involve the original trust links. Since each relay node may discover

many other relay nodes apart from its neighbors, Kaleidoscope can provide high service availability even

when many relay nodes are offline.

Kaleidoscope uses three key ideas to address the problem of restricted service discovery. First, Kalei-

doscope disseminates the identities of relays and exit points along links in the trust network. If there are

few attack trust links between honest users and the censor, the censor has limited ability to launch Sybil

attacks and learn of many relays. This requires users to establish trust links with care. There are strong

disincentives to choosing links carelessly: subverted trust links cause a node to lose its known relays and

exit points. The censor could infiltrate the trust network by corrupting real users; however, we assume

that the number of users colluding with the censor is small. Social links also provide the important benefit

of allowing users to utilize offline communications to bootstrap the system in a completely decentralized

fashion. In contrast, existing peer-to-peer networks require a fixed set of bootstrap servers which can be

easily blocked.

Second, Kaleidoscope uses a limited advertisement protocol to restrict the scope of information dis-

semination about relays and exit points within the trust network. Contrast this approach with existing

darknets [8], which reveal all nodes’ identities in a trust network to each other. Consequently, any suc-

cessful infiltration by the censor will expose all relays. On the other hand, each relay or exit point in

Kaleidoscope advertises its address to a small number of other nodes along a series of trust links by

performing a few short random walks beyond its immediate neighborhood (as illustrated in Figure 3).

Hence, any node participating in the trust network learns only a small number of the relay nodes in the

network.

Third, relay nodes play an important role in enhancing service availability in Kaleidoscope. In prac-

tice, due to limited the advertisement scope in Kaleidoscope, not every node will be aware of an exit

point. To overcome this barrier and route traffic towards some exit point, relay nodes propagate informa-

tion about the availability of exit service without directly revealing the identity of exit points. Multi-hop

traffic forwarding allows each exit point to serve more users via a few intermediary relays without di-

rectly revealing its address to them(as shown in thick lines in Figure 3).

5

4 Kaleidoscope’s Design

In this section, we elaborate upon three important design aspects of Kaleidoscope: how it leverages the

trust network to disseminate relays’ addresses (Section 4.1), how a node finds a multi-hop path to an exit

point (Section 4.2), and how to set various parameters in Kaleidoscope (Section 4.3).

4.1 Limited relay advertisement

In Kaleidoscope, all users operate as relays by default and a fraction of nodes outside the censored

domain act as exit points. To enable clients inside the censored domain to find short forwarding paths

to an exit point, each relay and exit point should advertise its address to r nodes over the trust network,

where r is larger than a node’s immediate trust neighborhood.

Flooding advertisements is undesirable as the number of recipients can far exceed the target reach

(r) with increasing number of hops. An alternate approach is to advertise a relay node’s address along

a few short random walks. A relay with degree d can perform d random walks of length w = r/d via

each neighbor. Any node receiving the advertisement learns of the relay’s address before forwarding it

on. To ensure that periodic advertisements reach the same set of r nodes, random walks should be made

repeatable: each time a node forwards an advertisement it remembers the next-hop node and uses the

same next-hop node for all future messages from the same advertiser.

Advertising along random walks has one short-coming: the censor could create many Sybil identities

“behind” a single attack edge and have each identity advertise itself to r different nodes as a decoy

exit point. As such, the censor could potentially learn of a huge number of clients exponential with

the random walk length, violating design requirement 3. To defend against this attack, we use random

routing [39, 40], where the basic idea is for every participating node to forward a relay advertisement

message along a pre-determined outgoing link based on the incoming link of the message instead of the

message originator’s identity (as in repeatable random walks). Random routing is used in SybilLimit [39]

to restrict the number of Sybil identities that an adversary can advertise along an attack edge. Therefore,

by fixing the maximum allowed random route length (wmax), advertisements from adversarial nodes and

their Sybils can reach at most wmax honest nodes with each attack edge.

Each relay’s advertisement contains the necessary information required to access that node: its IP

address, port number and an access cookie. Relays and exit points do not act as open proxies: a client

must present the advertised cookie in order to forward traffic via the corresponding relay. A relay gen-

erates a new access cookie every few days and expires the old ones. To forward advertisements, each

node constructs a routing table that matches each of its neighbors with another randomly chosen one,

e.g. Nx → Ny . Upon receiving an advertisement from neighbor Nx, a node forwards it to Ny. Each

node generates the routing table a priori and saves it on the local disk so the same table is used across

machine reboots.

The maximum number of distinct random routes a node can perform is bounded by its degree, which

can vary a lot for different nodes. For example, 10% of nodes in the YouTube social network have degrees

higher than 10 and 37% of nodes have only one neighbor. To accommodate such degree differences, we

give each relay some flexibility in choosing its route length (w) with the constraint that wmin ≤ w ≤
wmax. Nodes with a degree smaller than r/wmax advertise with route length wmax via all their neighbors

but might not reach the target of r nodes. We have to keep wmax small in order to bound the number

of adversarial advertisements that can propagate via each attack edge to no more than wmax. A node

with degree greater than r/wmin chooses a random subset of r/wmin neighbors to send advertisements

through. The identities of the chosen neighbors are saved to disk so the same routes are performed across

reboots. The lower limit wmin is necessary to ensure that a relay’s random route can reach a spread-out

neighborhood in the trust network.

In order to achieve the target reach r, a random route of length w should ideally visit w distinct

nodes. To increase the chances of a route visiting unique nodes, routing tables must not have entries so

that a node routes to itself. There is a simple heuristic for achieving this. A node computes a random

permutation ℘ among its d neighbors as N℘(1), N℘(2), ...N℘(d) and creates routing table entries of the

form N℘(i) → N℘(i+1 mod d) for all i ∈ [1..d]. By not routing packets received from the same neighbor

to itself, a route never visits the same node in two hops. However, a route might still visit the same node

in three or more hops. Specifically, the probability of a route visiting the same node in three hops is

6

C2, h=1

N1

N2

N5
N6

N8

N7

N4

N3

C2, h=1

C2, h=1

C1, h=0

Figure 4: N1 (an exit point) advertises its access cookie C1 and exit hop-count (h = 0) along a random route (shown

in dotted lines). Similarly, the relay N2 advertises its cookie C2 and exit hop-count (h = 1) along multiple random

routes. To find a multi-hop path to some relay, a node (e.g. N6) sets up a tunnel to the known relay with the minimal

hop-count (N2) which repeats the process until an exit point (N1) is reached.

c/d, where c is the clustering coefficient. The clustering coefficient measures the probability that two

neighbors of the same node are neighbors themselves and is typically around 0.3 in measured social

networks [28]. Therefore, the probability of a route visiting the same node in three or more hops is

small.

We expect the trust network to change infrequently as the underlying social relationships tend to

remain stable over long periods of time. Nevertheless, topology changes will occur occasionally, e.g.

when new users join the system. Incorporating changes with minimal modifications to existing routing

tables is straightforward [40]: when a node establishes a trust link with a new neighbor N ′, it replaces a

randomly chosen routing table entry Nx → Ny with two new entries Nx → N ′, N ′ → Ny . Similarly,

when a node abolishes an existing neighbor N ′, it merges the two affected routing entries Nx → N ′

and N ′ → Ny into one entry Nx → Ny. It is easy to see that these routing table changes preserve the

property that no neighbor is matched to itself.

4.2 Traffic forwarding

It is not enough to rely on relay advertisements alone to provide good service coverage. In a network with

n nodes, a fraction p of which are exit points, the probability that a node receives an advertisement from

at least one exit point is 1 − (1 − r
n
)p·n, assuming simplistically that each exit point’s advertisements

reach r random nodes. The resulting service coverage is only 63% for large n, when r = 100 and as

many as 1% of all nodes (p = 0.01) operate as exit points. Using a larger r does not solve the low

coverage problem: a larger r causes more exit points to be discovered by the censor and allows the

censor to potentially track more clients. A better alternative is to forward traffic via multiple hops to an

exit point. Since each hop along the path only needs to know the address of its next hop, many more

clients will be able to use an exit point without directly knowing its address.

To enable multi-hop forwarding, every node maintains a local forwarding table that includes each

known relay’s address with that relay’s exit hop-count. The exit hop-count of a relay measures the num-

ber of forwarding hops required to reach some exit point. A relay includes its exit hop-count in periodic

advertisements. An exit point advertises a hop-count of zero; a relay’s hop-count is one plus the min-

imum hop-count of all the relays found in its forwarding table. This advertisement protocol resembles

that of a simple distance vector routing protocol [30], except that Kaleidoscope does not include the final

destination (i.e., the exit point) in its advertisements. As latencies affect users’ browsing experience, long

forwarding paths are not useful. Thus, we limit the maximum forwarding hops to be hmax = 3. Relays

with hop-count ≥ hmax do not further advertise their service.

When forwarding the actual data traffic, a client first attempts to set up a multi-hop tunnel by contact-

ing the known relay R with the smallest hop-count in its forwarding table. Upon checking that the client

has the correct access cookie, R further contacts another relay in its forwarding table with a smaller hop-

count. The process is repeated until some exit point is reached. The resulting forwarding tunnel consists

of at most three hops.

7

Parameter Meaning Default

Value

r Targeted number of nodes a 100

relay’s advertisements should reach.

hmax Maximum traffic forwarding hops. 3-4

wmax Maximum allowed random 20

route length.

wmin Minimum route length used 7

by a relay.

Table 1: A glossary of Kaleidoscope’s system parameters and their default values.

Figure 4 gives an example of the relay advertisement and traffic forwarding process. The trust links

between nodes are shown in solid lines while the dotted lines denote the random routes traversed by

advertisement messages. In the example, N1 is the only exit point and N2,N4 are relays. Since N1 has

only one neighbor, it performs a single short random route to advertise its access token C1 and IP/port

information. N2’s advertisement traverses three random routes and contains N2’s access cookie, C2, and

exit hop-count (h = 1). To forward the actual data traffic, N6 uses C2 to set up an encrypted tunnel with

N2 which extends the path by tunneling to the exit point N1 using access cookie C1.

The power of multi-hop traffic forwarding lies in its ability to increase service coverage without

requiring each exit point to advertise its identity to more nodes. For example in Figure 4, all nodes

are able to use N1’s exit service even though N1 is only directly known to three nodes (N2,N3,N4).

Multi-hop forwarding is vulnerable to timing analysis: if the censor can observe and correlate traffic

going in and out of all nodes simultaneously, it could deduce the address of the exit point used by an

adversarial node even if the forwarding path has multiple hops. One can mitigate timing analysis using

known techniques [34]; our current implementation does not yet address timing attacks.

4.3 Parameter analysis

Two critical parameters that affect the design of Kaleidoscope are: (a) r, the target reach threshold and

(b) hmax, the maximum number of forwarding hops. Both these parameters are dependent upon the

maximum fraction of infiltration that Kaleidoscope hopes to handle. We now provide a simplified anal-

ysis that provides intuition on how to set these parameters. The analysis assumes that adversarial nodes

collect relay addresses by receiving their advertisements. Exposed relays and exit points are blocked

by the censor. The analysis is done for a regular graph where each node has exactly d neighbors. Fur-

thermore, we make the simplifying assumption that a relay’s advertisements reach r random nodes in

the system. These simplifications are not true in practice. However, as we will show in Section 5, the

resulting analysis still approximates the actual simulation results well.

The target reach of a relay (r) is dependent on f , the level of infiltration to the trust network denoting

the fraction of all attack edges between the censor and honest users. We model a censor’s infiltration

process by randomly choosing nodes from the graph to collude with the censor and mark all colluders’

edges as attack edges. Thus, in a network where a fraction f of links are attack edges, f/2 fraction of all

nodes are colluding with the censor.

Observation 4.1 Let X be the number of nodes receiving advertisements from a single unexposed relay

or exit point, the expected value of X is E(X) = r(1 − f
2)r, where f is the fraction of attack edges and

r is the target reach of a relay. E(X) is maximized when r = −1

ln(1− f
2
)
≈ 2/f .

Choosing r, wmax, wmin: For any relay, the probability that none of r recipients is adversarial is

(1 − f
2)r (f/2 is the fraction of colluding nodes). Therefore, the expected number of advertisements

from an unexposed relay is E(X) = r(1 − f
2)r. The optimal r for which E(X) is minimized is ropt =

−1/ln(1 − f
2) ≈ 2/f . In our current system, we pick f = 2% (which represents an extremely high

degree of infiltration) as the attacker infiltration threshold. Correspondingly, we set r = 2/f = 100
as a conservative estimate for r. The value of wmax is set based on r/d. We observe a median degree

of nearly 5 in many social networks; hence we set wmax = 20. The choice of wmin is dependent on

8

Network Nodes Edges Avg:Med. Cluster

×1000 ×1000 Degree Coeff.

YouTube [29] 439 1022 4.7 : 2 0.06

Flickr [28] 1121 2953 5.3 : 1 0.11

LiveJournal [28] 4028 21936 10.9 : 5 0.22

Synthetic [36] 1121 3195 5.7 : 5 0.19

Table 2: Characteristics of sanitized social networks and the synthetic model network used in the evaluation.

the diameter of the social network. Since social networks typically satisfy the fast mixing property [39],

setting a minimum path length of wmin = 7 allows each random route to explore and advertise a relay

node to random nodes within the social network.

Choosing hmax: Note that the optimal value of r is independent of the network size. Multi-hop

forwarding across relays becomes essential only when the network contains very few exit-points. The

value of hmax dictates the maximum outreach of any exit point; for a given hmax, in the best case

topological scenario, an exit point may be visible to rhmax users. We suggest hmax = 3 or hmax = 4 for

common use cases. For hmax = 3 and r = 100, Kaleidoscope can scale up to a 1 million user network

with few exit points. Choosing a larger value of hmax incurs performance overhead as well as runs the

risk of exposing too much encrypted traffic to the censor if the censor analyzes traffic flow at several

points within the censored domain.

The service coverage of Kaleidoscope is the probability that a node is able to find a multi-hop path

along unexposed relays to some exit point. Since it is hard to obtain a closed form expression for the

service coverage, we derive a recursive and conservative estimate based on the the fraction of exit points

(p), relay availability (q, the probability that a known relay is online) and the fraction f : (Derivation

details are in the appendix):

Observation 4.2 The probability that a node finds a working exit path with ≤ j hops is Prj{service} =

1 − (1 − r
n
)

Pj
i=0

Ri , where r is the reach of a single relay, n is the number of nodes, and Ri represents

the number of unexposed, working i-hop relays. Ri can be expressed as a recursive formula: Ri =
y · q · (n −

∑i−1
k=0 Rk) · (1 − (1 − r

n
)Ri−1), where y is the probability that a single relay is exposed and

Ri is the number of unexposed exit points. In particular, y = (1− f
2)r and R0 = p · n · y, where q is the

relay availability.

Observation 4.2 helps us understand the importance of parameter choices such as the number of relay

hops. To give a concrete example, in a network with 100000 nodes of which 0.5% are exit points, and 2%
of all edges are attack edges, for an observed reach r = 40 (the median reach for the YouTube topology

discussed in Section 5.2), the service probability is approximately 80% when using 1-hop relays with

only 30% availability of relay nodes. When allowing 2 relay hops, the service probability increases to

above 90%.

5 Evaluation

We evaluate the performance of Kaleidoscope using simulations on a number of real world social net-

works. The goal of our evaluation is to examine how well Kaleidoscope provides exit service to clients

inside the censored domain and how restricted service discovery defends against a censor that achieves

different levels of infiltration to the trust network. Our experiments support the following conclusions:

1. Kaleidoscope helps most nodes find a multi-hop forwarding path to some exit point. The service

coverage is high even though only a fraction of nodes act as relays. (Section 5.2)

2. Kaleidoscope degrades gracefully as the censor manages to control more attack edges in the trust

network. Even when the fraction of attack edges reaches 0.5%, Kaleidoscope manages to provide

service to >90% nodes in most networks. (Section 5.3)

3. Kaleidoscope sustains infrequent changes in the trust network without exposing many extra relays

to the censor over time. (Section 5.4)

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 n

od
es

 w
ith

 e
xi

t s
er

vi
ce

Fraction of relays online

LiveJournal
YouTube

Flickr
synthetic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

of distinct nodes receiving advertisements from a relay

LiveJournal
YouTube

Flickr
synthetic

Figure 5: (Left) The fraction of nodes that have access to some exit point grows quickly when more relays are online.

Experiments include 0.5% nodes as exit points and no adversarial nodes.

Figure 6: (Right) The distribution of the actual number of distinct nodes that receive advertisements from a relay.

The presence of many low degree nodes causes many relays to reach much fewer nodes than the target r (r=100,

wmax = 20).

5.1 Experimental setup

We examine the performance of Kaleidoscope on a number of network traces collected from online

social networking sites [28] as well as a synthetic social network model [36]. These network traces are

not ideal for evaluating Kaleidoscope: social networking users create links to share pictures/videos/blogs

with friends or acquaintances while we expect a Kaleidoscope user to create a link to a trusted friend

if she believes the friend will not collude with the censor. We sanitize the traces collected from social

networking sites to better match the deployment scenario of Kaleidoscope. First, since Kaleidoscope uses

bi-directional trust relationships, we prune all the uni-directional links between a pair of nodes. Second,

the Kaleidoscope software restricts the maximum node degree to be 50 to encourage users to choose

neighbors carefully. Thus, we prune redundant links so that each node has no more than 50 neighbors.

Since only a very small fraction of nodes have degrees larger than 50, only a small fraction of links are

eliminated. Table 2 shows the basic statistics of the sanitized social networks as well as the synthetic

network.

We configure Kaleidoscope to use the default parameter values in Table 1. In all experiments, we

select 0.5% nodes at random to act as exit points. We use a small percentage of nodes as exit points

since users tend to be wary about providing web access for others despite a flexible exit policy. On the

other hand, since relays require little configuration and can reside both within and outside the censored

domain, we expect that more users are willing to operate their nodes as relays.

5.2 Service coverage

The main power of Kaleidoscope lies in its use of relays to forward traffic over multiple hops to exit

points. For an end user to gain access to an exit point, it is necessary that all relays along at least one

relay path be online at the same time. Figure 5 shows the fraction of client nodes that find an exit path

of no more than three hops as a function of the relay availability. In the simulator, a potential relay node

is brought online with probability q. There are no adversarial nodes in these experiments. The service

coverage of Kaleidoscope increases quickly as more relays are present in the system. When more than

40% relays are online, the service coverage is very high (∼98%) for all networks except Flickr.

The reason for why Kaleidoscope performs much worse on Flickr than other graphs is because Flickr

has a particularly sparse network with median node degree of only one. As a result, half of the relays

only manage to advertise themselves to wmax=20 or fewer other nodes, causing Flickr to have much

worse service coverage than the other networks in the absence of adversarial nodes. Figure 6 presents

the cumulative distribution of the number of distinct nodes that receive an advertisements from a relay or

exit point. The smaller the actual reach is in Figure 6, the worse the corresponding service coverage is in

10

Figure 5. The “bumps” of various lines are due to a significant fraction of nodes with low degrees (1, 2

or 3). Although the presence of many low degree nodes impair the overall performance of Kaleidoscope,

a low degree node is also less likely to receive exit service itself. We believe such a correlation between

service and node degree can be a good incentive for users to establish more trust links.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.002 0.004 0.006 0.008 0.01

Fr
ac

tio
n

of
 n

od
es

 w
ith

 e
xi

t s
er

vi
ce

Fraction of attack edges

LiveJournal
YouTube

Flickr
synthetic

YouTube-analysis
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.002 0.004 0.006 0.008 0.01

Fr
ac

tio
n

of
 r

el
ay

s/
ex

it
po

in
ts

 e
xp

os
ed

Fraction of attack edges

LiveJournal
YouTube

Flickr
synthetic

Figure 7: (Left) The fraction of nodes that find an exit path of unexposed relays and exit points as a function of

increasing censor infiltration.

Figure 8: (Right) More relays and exit points are exposed as the fraction of attack edges increases. Despite many

exposed relays, high service availability is achieved using multi-hop traffic forwarding.

5.3 Attack resilience

Restricted service discovery limits the censor’s ability to discover relays and exit points according to the

number of attack edges. We simulate varying levels of censor infiltration by choosing a random fraction

of nodes that collude as adversarial nodes. All the edges of an adversarial node link to honest nodes,

therefore, the fraction of attack edges among all links is twice the fraction of adversarial nodes. All

experiments assume 30% of relay nodes are online.

We first evaluate the case of passive adversarial nodes. Passive adversarial nodes do not actively

advertise themselves as relays but only receive others’ advertisements and block the exposed relays

and exit points. Figure 7 shows the service coverage as a function of increasing censor infiltration. The

probability of a node receiving exit service decreases slowly as the fraction of attack edges grows to 1%,

which is twice the fraction of exit points (0.5%). Even when the censor manages to attach as many as

0.5% attack edges, the service availability remains high for all networks except Flickr: more than 90%

of users can still find paths of unexposed relays and exit points. Again, service availability is much lower

for Flickr because its network is extremely sparse.

Figure 7 also includes the analytical results for the YouTube network. The analysis is based on a

slightly more complicated version of Observation 4.2 augmented to account for topology-specific phe-

nomena. Specifically, we used the observed reach (r) in the simulations to calculate the service coverage.

In addition, we account for message overlapping in the following way: Observation 4.2 assumes that each

advertisement reaches r random nodes. However, we know that by our advertisement protocol, a node

that receives a j-hop advertisement message from its immediate neighbor N1 and forwards that mes-

sage to another neighbor N2, might also send out a (j+1)-hop advertisement message. This message will

surely be sent to N1 and N2 among its other neighbors. However, we know that these specific messages

sent through N1 and N2 are not going to cause any new nodes to become relays, and thus, need to be

discounted from the reach r. Mathematically we approximate this type of overlapping by scaling down

the target reach r of all relay nodes excluding 0-hop relays (exit points) by a factor of (d−2)/d, where d
is the average degree of that topology. The discounted 2 edges represent the ”lost” paths through nodes

N1 and N2 in the above explanation. Note that this approximation over-discounts paths from relays at the

end of a message path (nodes that do not forward received messages any further), however there are rel-

atively few such nodes. As can been seen from the graph, this analysis gives a reasonable approximation

11

of the simulation results (the results hold for all topologies in the graph).

Figure 8 shows the actual fraction of relays and exit points exposed as a function of increasing attack

edges. As we can see, 20 − 30% relays and exit points are exposed when the fraction of attack edges is

1% for all networks. Despite the large number of exposed relays, the overall service availability remains

high (> 90%) because of the effects of multi-hop traffic forwarding. In particular, the majority of nodes

have a working exit path via at least one hop of intermediate relays.

When adversarial nodes actively participate as decoy relays or exit points, they could learn of unsus-

pecting clients by actually forwarding traffic for them. The ability of the censor to pollute the network

with decoy relays’ information is limited by the number of attack edges times the system parameter

wmax, regardless of the number of Sybil identities it can create. Figure 9 shows the fraction of client

nodes that could potentially contact an adversarial node for exit service. We regard a client node as

trackable if it has received at least one advertisement from some adversarial nodes. As seen in Figure 9,

the number of trackable nodes can be significant when the censor controls more than 0.3% attack edges.

For accessing objectionable content, a client should consider using an anonymity system in combination

with Kaleidoscope to avoid exposing its identity to the censor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.002 0.004 0.006 0.008 0.01

Fr
ac

tio
n

of
 n

od
es

 tr
ac

ka
bl

e
by

 th
e

ce
ns

or

Fraction of attack edges

LiveJournal
YouTube

Flickr
synthetic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.002 0.004 0.006 0.008 0.01

Fr
ac

tio
n

of
 r

el
ay

s/
ex

it
po

in
ts

 e
xp

os
ed

Fraction of attack edges

LiveJournal
YouTube

Flickr
synthetic

Figure 9: (Left) The number of clients that could potentially request service from a decoy exit point is bounded by

the number of attack edges and wmax.

Figure 10: (Right) When new nodes join the network and activate trust links, the censor can learn of more relays via

each of its attack edge as a result of the routing table changes at honest nodes. However, the rate of increase in the

censor’s knowledge is slow. (0.5% attack edges).

5.4 Effects of a changing topology

Kaleidoscope exploits the relative static nature of the social network to achieve restricted service discov-

ery. Changes in the trust network could expose more relays. When a node establishes or deletes a trusted

neighbor, it modifies its routing table entries accordingly. These modifications might cause an existing

random route to change its course so new advertisements from an existing relay will reach a different set

of nodes, causing more nodes to learn of the relay’s address than it intends to.

We simulate the scenario of new users joining Kaleidoscope, which is probably the biggest source of

changes in the network. The experiments contain 0.5% attack edges. We start each experiment with half

of the node population already present. The initial population is selected by performing a breadth-first-

search from a random node until the resulting network includes half of the nodes. During an experiment,

we add one remaining node at a time by activating its trust links to those nodes that are already present

in the network. Each newly activated trust link causes an existing node to change its routing table and

one of the random routes going through that node will be routed differently as a result. Each change

in a random route might give away additional relay information to adversarial nodes that are already

present in the network. Figure 10 shows the number of relays exposed per attack edge as a function of

the number of trust links activated over time. As expected, the censor can collect information on more

12

Network Direct One hop Two hops

connection to to an exit to an exit

an exit point point point

YouTube 0.14 0.42 0.44

Flickr 0.15 0.41 0.44

LiveJournal 0.24 0.39 0.37

Synthetic 0.15 0.56 0.29

Table 3: Fraction of serviced users at different distances from an exit point.

Tunnel

module

Advertise

module

Tunnel

module

Advertise

module

Tunnel

module

Advertise

module

web

proxy

client node client / relay node exit point

to blocked

sites

SSL/TLS SSL/TLS

Figure 11: The software architecture of Kaleidoscope. The client browser communicates with the local tunnel module

which further forwards the traffic using SSL/TLS over multiple hops to an exit point. The exit point runs a separate

web proxy to access web sites allowed by the node’s exit policy.

relays due to network changes. Nevertheless, the rate of the increase in the censor’s knowledge is slow,

indicating that topology changes are unlikely to impair Kaleidoscope’s performance. In practice, the IP

address of a relay could also change slowly over time which serves to delete old information collected

by the censor.

5.5 Distance to an exit point

Table 3 shows the distribution of distances to an exit point in hop-count for all nodes with a working exit

path. Since an exit point needs to make an additional connection to the origin web server, a user traverses

at most hmax = 3 hops to reach the origin web server. As expected, most users do not know an address

of an unexposed exit point. However, for all networks more than 10% of the serviced nodes can reach an

exit point directly and more than half of the serviced nodes can reach an exit point via at most one relay.

This experiment assumes 30% of relay nodes are online, 2% attack edges and 0.5% exit points.

6 Implementation and Deployment Experiences

Kaleidoscope has been fully implemented and available for public download since 9/2008. This section

describes the implementation details and our experiences in running a small scale deployment over a

six-month period.

6.1 Implementation

Kaleidoscope runs as a daemon process that operates in one of three modes: exit point, relay/client or

client-only. Currently, only nodes with non-NATed addresses can operate as relays or exit points. We have

built a Firefox plug-in to help users turn traffic forwarding on and off easily from within the browser.

The plug-in also serves as the GUI for configuring Kaleidoscope.

Figure 11 illustrates the overall architecture of the implementation. Kaleidoscope consists of two

modules: the advertisement module and the tunnel module. The advertisement module is in charge of

communicating with a node’s trusted neighbors via UDP to learn the address information of other relays

and their exit points. During the actual data forwarding, the browser sends plain web traffic to the local

tunnel module which relays the traffic over a chain of SSL/TLS tunnels to the exit point. The exit point

runs a separate web proxy which is configured to only accept local connections and is not accessible to

non-Kaleidoscope users and port scanners.

The implementation must address several practical challenges to be resilient against blocking. Below,

13

Figure 12: Kaleidoscope’s Contacts Management window and Add-Contact dialog. Kaleidoscope’s configuration

options and controls are integrated into the Firefox web browser. (kscope is Kaleidoscope’s code name.)

we discuss these challenges and our solutions.

Bootstrapping the trust network. Upon first installation, Kaleidoscope generates a new public/private

key-pair. Users establish trust relationships by exchanging public keys with each other. The advertise-

ment module uses the public key of a neighbor to authenticate its communication with that neighbor. The

current implementation relies on manual key exchange. Figure 12 shows a screen shot of the configura-

tion window for managing trusted neighbors. To add a neighbor, the user pastes the neighbor’s details

including the public key received over emails into a configuration box.

Handling dynamic IP addresses. To communicate with trusted neighbors, a node must learn of

their IP addresses. Since a large number of home users have dynamic IP addresses, Kaleidoscope needs

to automatically track IP address changes over time. There are two requirements for mapping a trusted

neighbor to its current address: first, the mapping mechanism itself must not be blocked easily. Second,

the censor should not be able to discover the IP addresses of Kaleidoscope users easily.

Our current implementation recommends using dynamic DNS for managing IP address changes.

There are many existing dynamic DNS services offering hundreds of domain names and many services

are free of charge. Users register dynamic DNS domain names of their choice and exchange them along

with public keys among trusted friends as part of the out-of-band bootstrapping process (see Figure 12).

We assume the censor is unlikely to block all dynamic DNS services nor pollute all dynamic DNS

domain names since most clients that use dynamic DNS services do not run Kaleidoscope. A promising

alternative is to encrypt a node’s current IP address using its neighbors’ keys and publish the encrypted

addresses on websites that host user-generated content. One can even employ steganography techniques

to hide encrypted content in uploaded images [9].

Handling nodes behind NATs. When a pair of users both lie behind NAT, they cannot forward

advertisements via normal methods. Standard techniques for initiating communication to nodes behind

NATs rely on centrally managed rendezvous servers (e.g. STUN [33] and TURN [32]) and thus are not

suitable. Our implementation employs nodes with non-NATed addresses as mailboxes to pass encrypted

UDP advertisement packets for users behind NATs.

Any non-NATed node can operate as a mailbox to temporarily store encrypted messages for others.

Like proxies and relays, a mailbox announces its service via periodic advertisements. To forward an

advertisement to a NATed neighbor, a node deposits encrypted UDP messages at both of the neighbor’s

14

of
relay

AES
key
Ks

SHA1 of
PKAlice

list of
relay entries

list of
mailbox entries

variable length
padding

encrypted using PKBob signed with PKAlice, encrypted with Ks

of
mbox

Figure 13: The format of a UDP advertisement message from Alice to Bob. The message header is shaded in gray

and an AES key is generated for each message. The body contains a list of relay entries each of the form (IP address,

port, access cookie, random route TTL, exit hop-count) and a list of mailbox addresses.

mailboxes. A NATed neighbor periodically requests deposited messages from its mailboxes. A NATed

node tries to maintain two working mailboxes at all times: if a chosen mailbox becomes unavailable, the

node replaces it with another discovered mailbox and notifies its neighbors of the change. The Kaleido-

scope software distribution includes the identities of two initial mailboxes. As Figure 12 shows, users

with NATed nodes exchange the identities of their initial mailboxes as part of the out-of-band bootstrap-

ping process. The mailboxes included in the software distribution could be blocked by the censor, but

such blockage only impacts those NATed nodes that have not yet learnt of any other mailboxes from

Kaleidoscope. As nodes do not remain online all the time, mailboxes can also be optionally used by

non-NATed nodes to speed up advertisement forwarding.

Hiding network fingerprints. Since the censor controls the underlying communication infrastruc-

ture, Kaleidoscope must make sure that its traffic leaves no distinguishable fingerprints. To prevent port-

based filtering, the software installer randomly selects unused ports for the advertisement and tunnel

module upon first installation and uses port 443 for the tunnel module if it is available. Figure 13 shows

the format of an advertisement message in the UDP payload. The advertisement message is encrypted

and has a variable size so it cannot be filtered based on simple pattern matching. The communication

between tunnel modules is done using standard SSL/TLS. Nodes use self-signed certificates with ran-

domly chosen Common Names to avoid leaving identifiable patterns during the SSL/TLS handshake.

The current implementation only defends against known filtering techniques such as pattern matching

or port-based filtering. More sophisticated traffic analysis is possible to identify and block encrypted

Kaleidoscope advertisements and tunnels. Even though we have not implemented any known defenses

to traffic analysis [34], the current implementation still raises the bar for Internet censorship.

6.2 Deployment Experiences

The Kaleidoscope software has been available for public download since September, 2008. We did not

publicize Kaleidoscope widely because we are still addressing usability issues in software installation

and upgrade on various types of client machines. We personally recruited friends from different coun-

tries with known censorship practices to run Kaleidoscope. At least 40 users have installed and used

Kaleidoscope since our latest software release on March, 2009. Kaleidoscope gives users the option to

automatically submit usage logs to our server. Unfortunately, because of the sensitive nature of collecting

usage statistics, most users did not turn on this option. Based on the two Kaleidoscope logs at the au-

thors’ nodes, we noticed at least 20 active users at any given time in the current deployment. We correlate

an anonymized proxy log from an exit point with the Kaleidoscope log from that exit point. Among all

IP addresses observed in the proxy logs, approximately half of them have been used by that exit point’s

direct neighbors according to the Kaleidoscope log. The rest of the IP addresses belong to nodes that are

at least 2 hops away from the exit point in the trust graph.

Table 4 shows website access statistics gathered from the proxy log of an exit point. This exit point

has served over 100,000 web requests which represents fairly heavy usage because users typically turn

off Web access via Kaleidoscope using our simple “turn-off option” within the browser when surfing

unblocked websites. On the other hand, not all web pages accessed via Kaleidoscope are necessarily

blocked at the requesting nodes because users might forget to re-enable direct access after using Kalei-

doscope to access some blocked sites. The most common types of content accessed via Kaleidoscope

were news and video media from popular web sites. Many sites in these categories, e.g. mitbbs.com,

are known to be blocked in some countries. Anecdotally, we are also surprised to find out that many

users are also using Kaleidoscope to circumvent the access control mechanism implemented by some

websites to make content available only to users in particular geographical regions.

15

Types of # of # of distinct Example

Websites requests domains site

News (English) 11,814 2 nytimes.com

News (other 33,118 12 mitbbs.com

languages)

Video/Photos 19,630 12 youtube.com

Information 15,851 12 wikipedia.org

and searching

Universities 13,151 13 kaist.ac.kr

Other 13,695 368

Total 107,259 419

Table 4: Types of Web content accessed via Kaleidoscope during a small scale deployment from 03/09-09/09. The

statistics presented were gathered from a single exit point.

Lessons learned. Our deployment experience has taught us two lessons. First, manual bootstrapping

of trust relationships is non-trivial for most users. Kaleidoscope only requires a user to copy and paste

a text message obtained from an friend’s email to establish a trust link. Despite its simple interface, this

process seems cumbersome enough to deter many users from successfully establishing trust links. To

achieve a larger scale deployment, we need to explore some alternative means to automatically establish

trust links. For example, Kaleidoscope nodes could exchange public keys by publishing information on

popular social networks. Second, even though the implementation is based on Java and Firefox plugin,

Kaleidoscope is not as portable as we had hoped. The vast diversity of client machine installations has

caused numerous issues such as JVM version mismatches, missing Firefox installations, wrong Firefox

versions etc. We are currently investigating a self-contained distribution of Kaleidoscope on USB keys.

7 Discussion

Implications of discovering exit points: A censor can trigger web requests from a client node under its

control to a website it owns in the hope of determining the identity of the exit point in use. Blocking exit

points discovered in this fashion is not a serious problem. This is because Kaleidoscope relies on a large

number of relays outside the censored domain to forward traffic to some exit points. As the censor can

only block the direct access to a discovered exit point from within the censored domain, relays outside

the censored domain can continue to use such an exit point.

User incentives: In addition to mitigating Sybil attacks, social networks also provide good incentives

for users to help out their friends or even friends of friends to access blocked websites. Since sharing

information with an ill-chosen friend might cause one’s own relays to be blocked, there is also a strong

incentive to choosing one’s trust links carefully. When there are not enough users, Kaleidoscope is frag-

mented into many “islands” of trust each consisting of a small group of users. Unlike most peer-to-peer

applications that are useful only when they reach a certain scale, a small Kaleidoscope network can be

as helpful as a large one so long as there is some exit point in the “island”.

Relationship with anonymity systems: Kaleidoscope is designed to access gray material for which

client anonymity is not required. In fact, the challenges of providing access are so different from those of

anonymity that the resulting solutions are polar opposites. To be resilient against blocking, Kaleidoscope

reveals each relay to a small subset of users and no user is allowed to discover many relays. In contrast,

anonymity systems would like to keep the identities of all relays and traffic mixes public because the

strength of anonymity depends on all users being able to use all servers to “blend in” with each other.

The relay mechanism used by Kaleidoscope is also at odds with that required of an anonymity system.

Relays in Kaleidoscope help an exit point serve more clients without revealing its address to them; in

contrast, in anonymity systems [19, 23], it is more secure to let a client pick the forwarding path among

all servers. Even in anonymity systems that let a forwarder pick the next hop (e.g. Crowds [31]), the next

hops are chosen from the entire pool of nodes so that paths initiated by different clients can blend in with

each other maximally. In Kaleidoscope, a relay does not choose the next hop randomly from all nodes,

rather, it uses one that minimizes the exit hop-count.

16

Despite the fundamental design differences, anonymity systems and Kaleidoscope can complement

each other. In particular, Kaleidoscope can be viewed as a decentralized gateway for providing access to

a centrally managed anonymity system like Tor. Since Tor also uses multi-hop forwarding, anonymity

comes at the cost of extra latency and should be selectively enabled by a user. Adding the Tor gateway

feature to the current software distribution is part of the future work on Kaleidoscope.

8 Related Work

Most existing research on censorship circumvention has focused on censorship-resilient content pub-

lishing [15, 37, 38] and anonymous communication systems [12, 13, 19, 23, 25, 31]. Censorship-resilient

publishing systems replicate censored content widely on many servers and thus are not suitable for web

content as popular websites today host enormous dynamic content. Most existing anonymity systems are

centrally managed and do not defend against an adversary that tries to block access to the system. As

discussed earlier, anonymity systems can be integrated with Kaleidoscope to provide both access and

anonymity.

In the censorship circumvention literature, relatively few proposals [18, 22, 26] address the access

problem to gray material. All proposed solutions recognize that the key challenge in a proxy-based

circumvention system is to restrict the number of proxies discoverable by each user so that a censor

cannot learn of and block all proxies by posing as a few legitimate users. In [18], the Tor developers

have proposed a variety of mechanisms to disseminate the identities of a small subset of bridge relays

to clients using a centralized discovery service. Key-space hopping [22] restricts the proxies known to

each client based on its IP address. Block-resistant JAP [26] distributes relay addresses via a mass email

list consisting of potentially interested users. These proposals either use a centralized discovery service

or require users to know a bootstrap proxy a priori. In contrast, Kaleidoscope operates in a completely

distributed fashion and does not require bootstrap proxies. In fact, users could use Kaleidoscope as a

bootstrap system to access more relays from existing centralized services. Furthermore, since there is no

strong identity associated with each user, existing proposals rely on CAPTCHA puzzles or IP addresses

to combat Sybil attacks. These defenses might not be effective against a governmental censor that owns

abundant IP addresses and human resources.

Many proxies have been built to relay traffic to blocked websites, e.g. Psiphon [6], Circumventor [3].

Most of these proxies set up SSL/TLS connections for communicating with clients inside the censored

domain. Infranet [21] obfuscates an encrypted communication channel using steganography in scenarios

where the mere presence of an encrypted channel could cause the suspicion of a censor. Most proxy-

based circumvention systems rely on the owners of volunteer proxies to manually disseminate a proxy’s

identity to her friends. Kaleidoscope automates such manual proxy dissemination processes and allows

a user to discover proxies not operated by her immediate friends.

A number of existing systems have used the trust network to defend against Sybil attacks in the

context of different applications such as admitting honest servers [39, 40], computing node reputa-

tions [14,27], and fighting unwanted communication [24,29]. The random route used by Kaleidoscope is

inspired by SybilGuard [39,40]. In SybilGuard/SybilLimit each node performs a few very long routes or

many short routes to admit other honest nodes. Kaleidoscope uses random routes for a different purpose,

namely, to disseminate each relay’s address to a small subset of other nodes. As a result, a few short

routes are needed for each relay.

WASTE [8] and other darknets allow users to connect to a group of trusted computers in order

to exchange information. WASTE relies on strong encryption to secure the communication between

members of small networks. Since WASTE is designed to share information and supports search features,

it does not provide restricted service discovery. Unlike Kaleidoscope, WASTE creates a fully connected

mesh of users by propagating their public keys. If a censor is able to join a WASTE network, it should be

able to discover all users of that network. As does WASTE, Kaleidoscope supports using dynamic DNS

for identifying hosts.

9 Conclusion

Kaleidoscope is a peer-to-peer system of relays that enables users inside a censored domain to access

blocked content. Kaleidoscope provides restricted service discovery over a trust overlay where links

17

correspond the real world trust relationships between users. By disseminating relay addresses over the

trust network and forwarding traffic over multiple hops to some exit point, Kaleidoscope provides good

service when a censor achieves only a low level of infiltration to the trust network. We have implemented

Kaleidoscope and deployed it among a small community of users for daily use. We believe Kaleidoscope

is a promising solution for accessing a vast amount of blocked content on the Internet. Kaleidoscope is

publicly available at http://www.kspro.org.

References

[1] Anonymizer. http://anonymizer.com/.

[2] Bbc news. china criticised for ban on google. http://news.bbc.co.uk/1/hi/technology/2238236.stm.

[3] Citizens Lab. Everyone’s guide to bypassing internet censorship.

http://deibert.citizenlab.org/Circ_guide.pdf.

[4] OpenNet Initiative. http://www.opennet.net.

[5] PC world. China blocks youtube, restores flickr and blogspot.

http://www.pcworld.com/article/id,138599-c,sites/article.html.

[6] Psiphon. http://psiphone.civisec.org.

[7] Safeweb privacy proxy censored in china. http://censorware.net/articles/01/03/14/0755209.shtml.

[8] Waste. http://wasteagain.sourceforge.net/.

[9] A. Baliga, J. Killian, and L. Iftode. A web based covert file system. In 11th HotOS, 2007.

[10] A. Banerjee, M. Faloutsos, and L. Bhuyan. Is someone tracking p2p users? In IFIP Networking, 2007.

[11] T. Blogs. Tor partially blocked in china. http://blog.torproject.org/.

[12] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 4(2),

February 1981.

[13] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology

1(1), pages 65–75, 1988.

[14] A. Cheng and E. Friedman. Sybilproof reputation mechanisms. In P2PECON ’05: Proceedings of the 2005 ACM

SIGCOMM workshop on Economics of peer-to-peer systems, pages 128–132, New York, NY, USA, 2005. ACM.

[15] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous information storage and retrieval

system. In Proceedings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity and

Unobservability, 2000.

[16] R. Clayton, S. Murdoch, and R. N. M. Watson. Ignoring the great firewall of China. In 6th Workshop on Privacy Enhancing

Technologies, June 2006.

[17] J. Crandall, D. Zinn, M. Byrd, E. Barr, and R. East. Conceptdoppler: A weather tracker for internet censorship. In 14th

ACM Conference on Computer and Communications Security, 2007.

[18] R. Dingledine and N. Mathewson. Design of a blocking-resistant anonymity system.

http://www.torproject.org/svn/trunk/doc/design-paper/blocking.pdf.

[19] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. In Proceedings of the 13th

USENIX Security Symposium, Aug. 2004.

[20] J. Douceur. The sybil attack. In IPTPS 2002.

[21] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger. Infranet: Circumventing web censorship and

surveillance. In Proceedings of the 11th USENIX Security Symposium, 2002.

[22] N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan, and D. Karger. Thwarting web censorship with untrusted

messenger discovery. In Privacy Enhancing Technologies Workshop, Mar. 2003.

[23] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymizing network layer. In ACM Conference on Computer and

Communications Security (CCS 9), Nov. 2002.

[24] S. Garriss, M. Kaminsky, M. Freedman, B. Karp, D. Mazires, and H. Yu. Re: reliable email. In Proceedings of the 3rd

NSDI, 2006.

[25] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding Routing Information. In R. Anderson, editor, Proceedings of

Information Hiding: First International Workshop, pages 137–150. Springer-Verlag, LNCS 1174, May 1996.

[26] S. Kopsell and U. Hillig. How to achieve blocking resistance for existing systems enabling anonymous web surfing. In

Workshop on Privacy in the Electronic Society, 2004.

[27] R. Levien and A. Aiken. Attack-resistant trust metrics for public key certification. In SSYM’98: Proceedings of the 7th

conference on USENIX Security Symposium, 1998, pages 18–18, Berkeley, CA, USA, 1998. USENIX Association.

[28] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and S. Bhattacharjee. Measurement and analysis of online social

networks. In 7th Usenix/ACM SIGCOMM Internet Measurement Conference (IMC), 2007.

[29] A. Mislove, A. Post, P. Druschel, and K. P. Gummadi. Ostra: Leveraging trust to thwart unwanted communication. In

NSDI’08: Proceedings of the 5th conference on 5th Symposium on Networked Systems Design & Implementation, Berkeley,

CA, USA, 2008.

[30] L. Peterson and B. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann, 2003.

[31] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web transactions. ACM Transactions on Information and System

Security, 1998.

[32] J. Rosenberg, R. Mahy, and P. Matthews. Traversal Using Relays around NAT (TURN), Oct. 2008.

[33] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities for NAT (STUN). RFC 5389 (Proposed

Standard), Oct. 2008.

18

[34] V. Shmatikov and M. Wang. Timing analysis in low-latency mix networks: Attacks and defenses. Lecture Notes in

Computer Science, 4189:18–33, 2006.

[35] N. Y. Times. Thailand bans youtube.

http://www.nytimes.com/2007/04/05/business/worldbusiness/05tube.html.

[36] R. Toivonen, J.-P. Onnela, J. Saramäki, J. Hyvönen, and K. Kaski. A model for social networks. Physica A Statistical

Mechanics and its Applications, 371:851–860, 2006.

[37] M. Waldman and D. Mazières. Tangler: A censorship-resistant publishing system based on document entanglements. In

Proceedings of the 8th ACM Conference on Computer and Communications Security, 2001.

[38] M. Waldman, A. Rubin, and L. Cranor. Publius: A robust, tamper-evident, censorship-resistant and source-anonymous web

publishing system. In Proceedings of the 9th USENIX Security Symposium, Aug. 2000.

[39] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit: A near-optimal social network defense against sybil attacks. In

IEEE Symposium on Security and Privacy, 2008.

[40] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Defending against sybil attacks via social networks. In Proceedings

of ACM SIGCOMM Conference, Sept. 2006.

10 Appendix

We show how we derive Observation 4.2 which estimates the probability of a node getting exit service

in a n-node network with j-hop relays (j ≥ 0), with a fraction of attack edges f , a fraction of exit

points p, and a fraction q of relays being online. Let Rj denote the expected number of unexposed,

working j-hop relay nodes (for each node, j is the minimal possible value). It follows that there are∑j

i=0 Ri unexposed relays advertising their service. Since, by our assumption, each relay reaches r
distinct random nodes, the probability of an honest node receiving at least one message from a working

relay is Prj{service} = 1− (1− r
n
)

Pj
i=0

Ri . One can think of this as the classic bins and balls problem

where in each repetition r bins are chosen at random, and we are interested in the probability of a bin

ending up with at least one ball in it. It remains to show how we estimate Ri. Let y be the probability

that none of the r transmitted messages a relay sends end up at an adversarial node. By our attack edges

selection process, there are, on average, f/2 randomly chosen adversarial nodes. Under the assumption

that advertisements reach r random nodes, y = (1 − f
2)r. We can estimate R0 (unexposed exit points)

as R0 = y · p · n. To obtain R1, we first calculate the probability of a node receiving an advertisement

from some unexposed exit point. Again, we can view this problem as the classic occupation problem of

throwing m balls into n bins. Therefore, the probability of a node receiving at least one of the R0 · r
advertisements from unexposed exit points is 1 − (1 − r

n
)R0 . However, first, only nodes that are not in

Rk for k < i will be included, and second, we need to account for the independent probability of a node

acting as a relay (the churn factor q). Combining these details with the probability of 1-hop relays being

exposed, we get R1 = y ·q ·(n−R0) ·(1−(1− r
n
)R0). By the exact same arguments, we can genreralize

this approximation to Ri = y · q · (n −
∑i−1

k=0 Rk) · (1 − (1 − r
n
)Ri−1) for i > 1.

19

