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Abstract
We present Oolong, a distributed programming
framework designed for sparse asynchronous ap-
plications such as distributed web crawling, short-
est paths, and connected components. Oolong
stores program state in distributed in-memory
key-value tables on which user-defined triggers
may be set. Triggers can be activated whenever
a key-value pair is modified. The event-driven
nature of triggers is particularly appropriate for
asynchronous computation where workers can in-
dependently process part of the state towards con-
vergence without any need for global synchroniza-
tion. Using Oolong, we have implemented solu-
tions for several large-scale asynchronous compu-
tation problems, achieving good performance and
robust fault tolerance.
1 Introduction
Distributed computation has traditionally been
a powerful yet complex method of solving large
problems. As cloud computing services such as
Amazon EC2 and Windows Azure have become
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prevalent and economical, more application pro-
grammers have sought to harness distributed com-
putation to achieve scalable performance. Conse-
quently, there has been a surge in demand for pro-
gramming frameworks that can shield application
programmers from the complexities of distribution
and fault tolerance.

Most existing frameworks target synchronous
computation that iteratively reads or updates
a large fraction of a dataset with global syn-
chronization between iterations. For example,
MapReduce[3] and Dryad[5, 16] applications such
as word-count and sorting stream an entire dataset
for processing in a single round. Piccolo[14] and
Pregel[9] rely on global barriers to execute appli-
cations such as PageRank and K-Means round-
by-round. Asynchronous computation differs in
that execution does not proceed in lockstep across
rounds. Specifically, the result of past process-
ing is immediately used to determine the course of
current execution. By contrast, with synchronous
computation, the result of past processing only af-
fects computation in the next global round. Be-
cause they eschew global synchronization, asyn-
chronous solutions are much more efficient for
many problems. Unfortunately, there is no way
to express asynchronous computation with frame-
works such as MapReduce or Piccolo.

We propose a programming framework called
Oolong to address the needs of asynchronous ap-
plications. In a typical asynchronous application,
processing is only performed on the portion of
state that has been modified, and as a result of
such processing, additional state changes are gen-
erated which cause more work to be done. Thus,
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incremental execution in asynchronous computa-
tion can be viewed as reacting to some state mod-
ification. Oolong stores program state in dis-
tributed in-memory tables [14] and allows such
event-driven program structure to be expressed
naturally in terms of triggers, user-specified code
blocks that can be invoked whenever the associ-
ated table entry has been modified. Oolong trig-
gers perform asynchronous computation by pro-
cessing requested state modifications and schedul-
ing additional state changes.

Frameworks exposing global state employ peri-
odic checkpointing to recover from untimely node
failure. Checkpointing is expensive, so a long pe-
riod is used, meaning that significant progress is
lost if a node fails. Oolong provides continuous
checkpointing which stores the delta of in-memory
tables and trigger state with low overhead so that
little progress is lost upon recovery.

Our evaluation demonstrates that Oolong yields
2x to 13x speedups on Single-Source Shortest
Paths and connected components compared with
the synchronous Piccolo framework.
2 Oolong Design
Oolong targets a popular subclass of distributed
computation with the following properties:

In-memory Distributed State The input and
intermediate state of the computation fit in
the aggregate memory of all the nodes.

Asynchronous The computation iteratively pro-
cesses data with little or no global synchro-
nization needed.

Sparse Execution The computation accesses a
small fraction of its dataset at a time to
progress towards convergence, rather than re-
peatedly sweeping across all input data.

Many computation problems have asynchronous
solutions with the above characteristics. For ex-
ample, a distributed web crawler stores the crawl-
ing state for each URL it has encountered in mem-
ory and each node requests for those web pages
that have not yet been crawled without any global
synchronization among nodes. Similarly, many
graph problems such as shortest paths and con-
nected components also have asynchronous solu-
tions.

Design Overview Oolong stores the interme-
diate state of an application in key-value tables
distributed across the memory of all participat-
ing machines, like Piccolo[14]. Oolong lets pro-
grammers specify two sections of code attached to
tables, accumulators and triggers. Like Piccolo,
accumulators in Oolong combine updates to each
key-value pair; they can neither perform I/O nor
access global state. While Piccolo accumulators
have no return value, Oolong accumulators can
return true to indicate that a trigger should be
scheduled for execution on that key. Unlike ac-
cumulators, triggers are executed asynchronously
by each node after the updates have been applied.
Furthermore, triggers can perform arbitrary com-
putation such as doing I/O, reading or updating
different key-value pairs.
2.1 Programming API
An Oolong application consists of three parts: 1)
a section of code for declaring key-value tables and
launching application kernels. 2) application ker-
nels that run on many nodes to perform parallel
processing. 3) accumulators and triggers that are
associated with tables and respond to table up-
dates.

In Figure 1, we illustrate Oolong’s programming
API using an example application, Single-Source
Shortest Paths (SSSP). SSSP calculates the short-
est distance from a single source vertex to all other
vertices in a directed graph.

SSSP Main in Figure 1 first creates two tables,
dists and graph, each of which is divided into
1000 shards and distributed among all workers.
The main function then initializes all vertices’ dis-
tances from the source vertex to infinity and as-
sociates SSSP Trigger with the dists table. The
computation begins when the main function up-
dates the source vertex’s distance to 0. This up-
date is incorporated into the corresponding dists
table entry using the user-defined accumulator
function, SSSP Accumulator, which chooses the
minimum of the current and updated distance.
The update also causes the corresponding trig-
ger associated with the vertex to be scheduled for
execution sometime in the future. The trigger,
SSSP Trigger, simply updates each of its corre-
sponding vertex’s outgoing neighbors with a new
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def SSSP_Init_Kernel ( dists ):
for k in my_partitions ( dists ):

dists .put(key , infinity )

def SSSP_Accumulator (dist , new_dist ):
if new_dist < dist:

dist = new_dist
# Activate trigger
return true

else
# Do not activate trigger
return false

def SSSP_Trigger ( nodeID ):
d = dists .get( nodeID )
for t in graph . get( nodeID ). outgoing :

dists . update (t ,1+d)

# Main function
def SSSP_Main (src):

dists = Table (key=int , value =double , \\
shards =1000 , accum = SSSP_Accumulator )

graph = Table (key=int , value =Node , shards
=1000)

# Init all nodes ’ dists to inf
Run( SSSP_Init_Kernel , args= dists )
# Enable triggers
AssociateTrigger (dists , SSSP_Trigger )

# Activate triggers by updating src ’s dist
dists . update (src , 0)

Figure 1: Single-Source Shortest Paths in Oolong.
(Pseudocode uses Python-like syntax.)

potentially-shorter distance from the source. The
accumulators for those vertices will further acti-
vate their triggers if their distances from the source
become shorter.

As long as new shortest distances are found and
triggers are scheduled and run, the Run function
will block. The master periodically asks work-
ers how many updates they have applied and how
many triggers are scheduled; when no new updates
have been applied since the last check and no trig-
gers are scheduled, no further processing is possi-
ble and the problem has converged. Once the Run
function returns, the computation has converged
and the dists table contains the final shortest
path distance from the source vertex to all ver-
tices.
2.2 System Design
Oolong runs with one master node and many
worker nodes. The master is responsible for as-
signing table shards to workers and scheduling ker-

nel execution. The workers store table shards, ex-
ecute kernels and triggers, and respond to data
read/write requests from peers. A diagrammatic
explanation of the inter- and intra-worker commu-
nication is shown in Figure 2.
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Figure 2: Workers, master, and messages in Oolong;
the tables and triggers inside a worker. Accumulators
can cause asynchronous triggers to be scheduled; trig-
gers can update and read keys and cause additional
triggers to be scheduled.

Trigger execution and convergence Each
worker employs multiple threads to execute ac-
tivated triggers concurrently since any individual
trigger might be blocked doing I/O or reading re-
mote table entries. We represent the current set
of scheduled triggers using a bitmap. The “dirty”
bit corresponding to a table entry is set by the ac-
cumulator if its return value is true. Each worker
periodically scans the bitmap to execute scheduled
triggers. The “dirty” bit for a key is cleared when
a trigger is run for that key. While a trigger is
being executed, the corresponding table entry can
be updated, which may schedule another trigger
for that key.
Failure recovery Oolong can checkpoint appli-
cation state to local disk or other fault-tolerant
storage to recover from worker crashes. Workers in
Oolong can record full checkpoints containing the
entire current application state including a copy of
the trigger bitmap, and delta checkpoints that con-
tain only the updates applied to tables since the
last full checkpoint. All checkpointing is coordi-
nated by the master and done using the Chandy-
Lamport snapshot algorithm. Oolong saves full
checkpoints periodically and performs continuous
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delta checkpointing in between full checkpoints. If
a worker crashes, all workers restart from the most
recent full checkpoint, then replay deltas and con-
tinue the application. Full checkpoints are fast to
restore, but are more expensive to save than delta
checkpoints. By combining the two, we achieve a
good balance of checkpoint overhead, restore time,
and checkpoint size.
3 Evaluation
Oolong was implemented in C++, building on the
codebase of the Piccolo project [14]. It utilizes
the OpenMPI distributed message-passing system,
and employs Google’s protobuf library for serial-
ization. APIs in C++ and Python are provided
to Oolong application programmers.

We have implemented several asynchronous ap-
plications including SSSP, connected components,
and PageRank. We compare the performance of
these applications against their synchronous coun-
terparts running on top of Piccolo. The experi-
ments were run on a local cluster of 7 machines
of which six are dual processor nodes (2 quad-core
2.27GHz Xeon, 16GB RAM) and one is a single
processor node (1 quad-core Xeon, 8GB RAM).
We ran the master on the single processor node
and ran one to eight workers on each dual proces-
sor node.
3.1 Performance
SSSP Performance We evaluated both asyn-
chronous SSSP (on Oolong) and its synchronous
version (on Piccolo) using a synthetically gener-
ated random graph of 100M vertices. Figure 3(a)
shows the SSSP execution time as more workers
are added. Both asynchronous and synchronous
SSSP programs display almost ideal scalability as
additional workers are added, achieving a 5.81x
speedup when moving from 8 to 48 workers. SSSP
under Oolong outperforms the synchronous ver-
sion, achieving an average speedup of 13.0x over
Piccolo on the same number of workers.

The speedup achieved by Oolong ’s SSSP im-
plementation can be attributed to two factors: 1)
Asynchronous SSSP on Oolong eliminates unnec-
essary work in repeating computations or scan-
ning the entire graph for not-yet-converged ver-
tices. 2) With no global iteration, asynchronous
SSSP saves the overhead of setting up and tear-
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(a) Shortest paths (100M-vertex graph)
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(b) Connected components (LiveJournal graph)

Figure 3: Performance and scalability for Piccolo and
Oolong .

ing down more kernels repeatedly. In particular,
we note that the last three iterations of the syn-
chronous SSSP needed to process fewer than 100
vertices in a 10M-vertex graph, a waste avoided
by adopting an asynchronous framework.

Connected Components Performance The
connected components problem involves finding
the vertices in a graph that are connected only
to each other and not to any other vertices. We
generated graphs using the same methodology as
the PrIter project [18], and also tested real-world
graphs from SNAP [2, 6]. Figure 3(b) shows the
scalability and performance of Piccolo and Oo-
long finding connected components in a 4.8M ver-
tex (138M directed-edge) graph of LiveJournal re-
lationships. Piccolo ’s synchronous implementa-
tion converged in six iterations on 48 workers in
42.7 seconds. The same graph was processed by
Oolong in 15.31 seconds, a 2.8x speedup. The
PrIter framework has a reported convergence time
of ∼130 seconds on 8 commodity CPU cores for a
much smaller graph of 400K vertices [18], a graph
that Oolong was able to process in 5.3 seconds on
8 cores. We note that this comparison is approxi-
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mate since PrIter has been evaluated on a cluster
with a different hardware configuration.
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Figure 4: Time to re-quiesce PageRank by adding
new vertices to an already-quiesced 1M-vertex graph.
The ideal re-quiesce time is computed as the fraction
of new vertices to the number of original vertices.

Incremental PageRank Computation The
PageRank algorithm assigns scores to vertices in
a web graph based on the link structure of the
graph. Our asynchronous implementation pro-
cesses PageRank updates for each vertex and sends
additional updates to the vertex’s neighbors if
the change in its PageRank score exceeds a pre-
configured threshold. Unlike the SSSP or con-
nected components problem, asynchronous Page-
Rank converges to similar but not identical final
scores as the synchronous solution. The asyn-
chronous implementation approximates it well,
however; the Kendall-Tau distance between the
asynchronous and synchronous PageRank solu-
tions is 0.994. Oolong’s PageRank achieves a 1.7x
speedup over Piccolo on 48 workers. More signif-
icantly, it is easy to extend asynchronous Page-
Rank to perform incremental computation: we
simply continue the asynchronous execution to re-
quiesce a modified graph. Figure 4 shows the
Piccolo and Oolong runtimes to re-quiesce a 1M-
vertex graph as a function of the number of new
vertices added to the graph. Piccolo requires as
many additional iterations to re-quiesce the graph
as for the initial run, hence its additional execu-
tion time remains roughly invariant regardless of
how much the graph is changed. By contrast, Oo-
long ’s incremental computation time scales with
the size of the change.
3.2 Complexity and Development
The primary benefit of Oolong over synchronous
frameworks such as Piccolo is that problems

naturally-suited to an asynchronous solution may
be more cleanly expressed than when forced into
a synchronous design. We found that this benefit
translated to conceptually-simple code for many
Oolong applications.

From an application writer’s perspective, our
trigger design offers expressiveness and flexibil-
ity, but also introduces two sources of complex-
ity. First, there is a risk of infinite trigger loops;
programmers must carefully design asynchronous
computation to ensure eventual convergence. Sec-
ond, it is sometimes difficult to debug a trigger-
based asynchronous computation. For example,
because asynchronous application flow is non-
deterministic, multiple runs may display inconsis-
tent failure symptoms. Despite above complex-
ity, our experience with Oolong has been positive.
For example, the development time for the Oo-
long SSSP was only 3 hours; it was written by a
coder with no background in writing Oolong pro-
grams, given only the interface documentation and
a brief explanation of the system.
4 Related Work
Most existing distributed programming frame-
works focus on synchronous computation and rely
on global barriers between iterations to converge
a computation. Examples include MapReduce [3],
Dryad [5], Spark [17], Piccolo [14], Pregel [9],
Ciel [11], TransMR [15], and PrIter [18]. Pic-
colo is optimized for computation whose interme-
diate state fit in the aggregate memory of the clus-
ter. Oolong extends Piccolo to provide support for
asynchronous computation. Our distributed key-
value store resembles the tuple space concept in
Linda [1]. However, tuple spaces are not designed
for high-frequency access, and lack the primitives
for triggered computation.

Database systems provide user-specified code
triggers which performs computation in response
to updates in a single transaction [10]. The trig-
ger primitive in Oolong is inspired by database
triggers. Unlike databases, which rely on trans-
actions, Oolong achieves fault tolerance with low
overhead by performing continuous checkpointing
in the background.

Recent distributed systems work has also ad-
dressed the importance of active (event-triggered)
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procedures in distributed storage. Comet pro-
poses Active Storage Objects that execute event-
triggered handler procedures on key-level granu-
larity, but are intended for storage rather than
computation systems [4]. Google’s Percolator sys-
tem maintains “observers” on a per-column basis
that can trigger arbitrary code when any row is
modified [13]. Like databases, fault tolerance in
Percolator is achieved by using transactions. Net-
work Datalog uses a set of trigger-esque constructs
to provide correctness and execute integrity rules
for network protocols [12, 7].

GraphLab [8] offers asynchronous features for
graph-based problems, particularly those within
Machine Learning. It focuses on providing sequen-
tial consistency for such computation with central-
ized scheduling and explicitly-expressed data de-
pendency. Oolong’s accumulator offers a cheaper
way to cope with concurrent updates compared
with enforcing sequential consistency.
5 Conclusion
Many problems are more efficiently solved with
asynchronous distributed computation than syn-
chronous execution. Existing distributed frame-
works are poorly suited to running asynchronous
applications without global barriers. Oolong pro-
vides user-specified triggers, run on table updates,
that balance independent progress towards a prob-
lem solution across a large number of workers with
globally-visible state. Effective computation time
on large clusters of failure-prone hardware is max-
imized with a continuous checkpointing scheme for
failure recovery.
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