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Abstract
Currently, users of geo-distributed storage systems face
a hard choice between having serializable transactions
with high latency, or limited or no transactions with low
latency. We show that it is possible to obtain both serial-
izable transactions and low latency, under two conditions.
First, transactions are known ahead of time, permitting
an a priori static analysis of conflicts. Second, transac-
tions are structured as transaction chains consisting of a
sequence of hops, each hop modifying data at one server.
To demonstrate this idea, we built Lynx, a geo-distributed
storage system that offers transaction chains, secondary
indexes, materialized join views, and geo-replication.
Lynx uses static analysis to determine if each hop can
execute separately while preserving serializability—if
so, a client needs wait only for the first hop to complete,
which occurs quickly. To evaluate Lynx, we built three
applications: an auction service, a Twitter-like microblog-
ging site and a social networking site. These applications
successfully use chains to achieve low latency operation
and good throughput.

1 Introduction
Many Web applications rely on geo-distributed stor-

age systems, such as Cassandra [2], Megastore [10] and
Spanner [22]. These systems hold the promise of both
high availability (by replicating data across datacenters)
and low latency (by placing data close to clients). A
useful feature of storage systems is serializable transac-
tions, which group many read/write operations to ensure
consistency despite failures and concurrency. Unfortu-
nately, existing mechanisms to provide transactions [12]
are expensive for a geo-distributed setting, incurring inter-
datacenter delays of up to hundreds of milliseconds.
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Studies done at Google and Amazon show that Web
users are sensitive to latency [46]: even a 100ms increase
in latency causes measurable revenue losses. It is there-
fore important to reduce the latency of transactions as
much as possible. A common way to achieve low-latency
is to drop serializability [28] and offer relaxed consis-
tency (e.g. causal+ [39, 40], PSI [50], Red/Blue [38],
HAT [9]). Many systems with weakened consistency also
have other limitations: some systems require all data to be
replicated at all datacenters [38–40], while others [38,50]
lack a scalable design within a datacenter.

It turns out that giving up serializability for low-latency
is unnecessary. This claim is predicated on two obser-
vations. First, typical Web applications run a predefined
set of transactions, so it is possible to perform a global
static analysis of its transactions before execution, to
find opportunities to execute them quickly without vi-
olating serializability. Second, one can decompose a
general (geo-distributed) transaction into a sequence of
hops, each modifying data in only one server. With the
aid of static analysis, one can safely run these hops as
separate transactions while preserving serializability, and
return quickly to clients after the first hop (often in the
local datacenter).

Using these ideas we built Lynx, a geo-distributed stor-
age system that provides serializability with low latency.
To scale, Lynx partitions tables into many shards, each
possibly replicated in a subset of datacenters. Lynx pro-
vides a new primitive called transaction chain or simply
chain. A chain is a sequence of hops, each accessing data
on one server, such that all hops execute exactly once
or none of them do, similar to the notion of a saga [30].
Applications submit transactions to Lynx as chains; Lynx
also uses chains internally to update secondary indexes,
materialized joins, and geo-distributed replicas.

Prior to application execution, Lynx performs a global
static analysis of its transaction chains. The analysis de-
termines if it is possible to execute each chain piecewise—
that is, as a series of local transactions, one per hop—
while preserving serializability of the entire chain. The
analysis uses the theory of transaction chopping [48] to
construct a graph based on the operations within the trans-



actions. Lynx has two ways to enhance the opportunity
for piecewise execution. First, Lynx lets programmers
provide annotations about the commutativity of pairs of
hops that would otherwise be considered to conflict. Sec-
ond, when chains are executed piecewise, Lynx ensures
origin ordering: if chains T1 and T2 start at the same
server, and T1 starts before T2, then T1 executes before T2
at every server where they both execute. This property
eliminates many conflicts in the internal chains that Lynx
uses for updating secondary indexes and join tables.

Lynx has some limitations. First, it does not reduce
the total execution time of a chain; rather, Lynx can re-
turn control to the application after the chain’s first hop.
The first hop is often fast: it commonly executes in the
local datacenter and writes some internal metadata to a
nearby datacenter (for disaster tolerance), which adds
only milliseconds of delay. This low first-hop latency
does not benefit all applications, but we believe that it
helps many Web applications where users interact—for
instance, by sending friendship requests, posting mes-
sages on walls, etc. These operations are well served by a
chain whose first hop modifies the user’s own data, while
later hops modify other users’ data in the background.
The second limitation is that Lynx cannot execute all
chains piecewise to attain low first-hop latency: the static
analysis may force some chains to execute as distributed
transactions. The third limitation is that Lynx does not
guarantee external consistency or order-preserving seri-
alizability [32, 54], but to compensate Lynx provides the
guarantee of read-my-writes within a session [52].

Using Lynx, we built three Web applications: an auc-
tion service ported from the RUBiS benchmark [1, 7]; a
Twitter-like microblogging service; and a Facebook-like
social networking site. These applications were easy to
build using Lynx’s API, and they benefit from piecewise
chains. Experiments running on three EC2 availability
regions show that these applications achieve low latency
with good throughput, and Lynx scales well with the
number of servers.

2 Overview
Setting. Lynx is a geo-distributed storage system for
large Web applications, such as social networks, Web-
based email, or online auctions. Lynx scales by partition-
ing data into many shards spread across machines. Each
shard can be geo-replicated at many datacenters, based
on requirements of locality, durability, and availability.
Unlike other systems [38–40], Lynx does not require that
all datacenters replicate all data, so Lynx can have many
datacenters with low replication cost.

Data model and usage. Application developers define a
set of schematized relational tables [22] sharded based
on their primary key. Lynx provides general transactions
in the form of chains, and all operations are performed

575       Cute puppy  123         --            --

Items (primary_key=item_id)

345        Nikon N50   666       123      $200

item_id  descrip-   seller   high       high
                tion                     bidder    price

Bids (primary_key=bid_id)

2          123       345    $200         

1          549       345    $100

bid_id  bidder  item  bid_price

• Insert bid b into Bids
• Read Items[b.item_id]

• Update Items[b.item_id]  if b.price is higher

Chain for placing a bid b

Figure 1: Example schema for a simple auction service and
a chain for placing a bid.

using chains. API details are given in Section 5.1.
We illustrate how applications can use Lynx with an

example from RuBIS [1], a simple online auction service
modeled after eBay. RuBIS stores data in many tables;
two are shown in Figure 1. The Items table stores each
item on sale with its item id, current highest bid, and user
who placed that bid. The Bids table stores item ids that
received a bid, the bid amounts, and the bidders.

The RuBIS developers denormalized the schema to
duplicate the highest bid in the Items table, to improve the
performance of a common operation: display the current
highest bid price of an item. When a user places a new
bid, RuBIS must insert the bid into Bids and update the
corresponding high price in Items in the same transaction
to ensure consistency. With Lynx, programmers write
such a transaction as a chain (Figure 1, bottom).

Lynx supports derived tables—tables whose contents
are automatically derived from base tables—for speeding
up queries or safeguarding data. There are three types
of derived tables: secondary indexes, materialized join
views, and geo-replicas. For example, RuBIS has a sec-
ondary index on the item id of Bids, to quickly find the
bidding history of an item. Derived tables are themselves
sharded according to their key (secondary index key, join
key, or replicated primary key) and spread across ma-
chines. When base tables change, Lynx automatically
issues sub-chains to update the derived tables. These
sub-chains are called system chains, while user chains
are written by application developers.

Before application deployment, Lynx performs a static
analysis of all application chains to determine if Lynx
can execute each chain piecewise—one hop at a time—
while ensuring the entire chain and its sub-chains are
serializable as a single transaction.

Features. In summary, Lynx has the following features:

• Serializability. Given an application and its chains,
Lynx ensures that concurrent execution of those chains
preserve serializability.

• Low latency. For chains that can be executed piece-
wise, applications can achieve low latency by having



Lynx return control after the first hop, which typically
executes in the local datacenter and logs to a nearby
datacenter for disaster tolerance. To the best of our
knowledge, no prior geo-distributed storage system
provides both serializability and low latency.

• Derived tables. Automatically updated secondary in-
dexes, materialized join tables, and geo-replicas speed
up common application queries.

• Scalablity. Lynx scales with the number of machines
in a datacenter and with the number of datacenters.
Transaction chains are the fundamental mechanism

underlying Lynx; we develop them fully in the next two
sections. Section 3 describes the properties of chains.
Section 4 explains how to ensure serializability of chains.

3 Transaction chains
A transaction chain accesses data that is distributed

over many servers. A chain encodes a transaction T
as a sequence of hops T =[p1 . . . pk] with each hop pi
executing deterministically at one server, where servers
can be at different datacenters and may repeat. A hop
may have input parameters that depend on the output of
earlier hops in the chain.

It is desirable to execute a chain piecewise, which
means that hops are executed one after the other as sep-
arate transactions. Such execution is efficient, because
each hop is contained within a single server, so it can be
executed as a local transaction. Chains can also improve
perceived application latency, as an application can just
wait for a chain’s first hop to complete.

Guarantees. Chains have the following properties:
• Per-hop isolation. Each hop is serializable with respect

to other hops in all chains. This is achieved efficiently
by executing a hop as a local transaction.

• Inner ordering. Hop pi+1 never executes before hop pi.
• All-or-nothing atomicity.1 If the first hop of a chain

commits, then the other hops eventually commit as
well. (They may abort due to concurrency control,
but in that case the system retries until they commit.)
Moreover, if the first hop aborts then no hop commits.
Thus, the first hop determines the outcome of the chain.

• Origin ordering. If two chains T =[p1...] and T ′=[p′1...]
start on the same server with p1 executing before p′1,
then pi executes before p′j for every pi and p′j that
execute on the same server.
When executed piecewise, chains might interleave

their execution. Say, if a chain has hops p1, p2 and an-
other chain has hops p′1, p′2, the system may execute the
hops in the order p1, p′1, p2, p′2. Lynx determines whether
such interleavings are serializable (Section 4) and, if not,
avoids them by executing the chain as a distributed trans-
action. Thus, Lynx ensures the following:

1called simply atomicity in the database community

T1,1 T1,2

T2,1 T2,2

T3

T1,1 T1,2

T2,1 T2,2

T3

(a) With SC-cycle (b) No SC-cycle

S-edge
C-edge

Figure 2: SC-graph analysis for transaction chopping. T1
is chopped into T1,1,T1,2 and T2 into T2,1,T2,2. There is an
SC-cycle in graph (a) but not (b).

• Serializability. Chains are serializable as transactions.

Restrictions. A chain has two restrictions. First,
application-initiated aborts can occur only at the first
hop of a chain (this is needed to implement all-or-nothing
atomicity). Second, chains are static: each hop executes
at a server that is known when the chain starts (needed
to implement origin ordering). Some transactions can-
not be structured as chains. These can be executed as a
distributed transaction in Lynx.

Linked chains. Applications can link together multiple
chains so that they execute consecutively, like a chain of
chains, where each chain individually satisfies the proper-
ties above. The set of linked chains may not be serialized
as one transaction, but Lynx ensures the following atom-
icity property: if chains are linked and the first chain
starts then the other chains eventually start. Like hops in
a chain, linked chains can receive inputs from previous
chains, and all linked chains must be submitted together.

4 Providing serializability
Web applications typically have an a priori known set

of transactions, permitting a global static analysis of the
application to determine what chains can be executed
piecewise while preserving serializability. If the analy-
sis determines that executing a chain piecewise would
violate serializability, Lynx executes the chain as a dis-
tributed ACID transaction [12, 22], incurring higher la-
tency. Alternatively, the developer can remove conflicts
using annotations or linked chains, as we describe below.

In what follows, we explain how the analysis works
(§4.1), how to improve the chances for piecewise execu-
tion (§4.2), how to cope with the lack of external consis-
tency (§4.3), and what limitations chains have (§4.4).

4.1 Static analysis of chains
The analysis uses knowledge of the table schemas and

the application chains, specifically the table accessed
by each hop of each chain and the type of access (read
or write). The analysis determines what chains can be
executed piecewise while preserving serializability.

The analysis is based on the theory of transaction chop-
ping, originally developed for breaking up large trans-



actions into smaller pieces in centralized database sys-
tems [48]. The chopping algorithm takes a set of chopped
transactions and constructs a graph, which we call SC-
graph, where vertices represent transaction pieces and
edges represent relationships between pieces. There are
two types of edges: S-edges connect vertices of the same
unchopped transaction, C-edges connect vertices of dif-
ferent transactions if they access the same item and an ac-
cess is a write. An SC-cycle is a simple cycle containing
a C-edge and an S-edge (Figure 2). It is shown that serial-
izability is assured if the SC-graph has no SC-cycles [48].
Intuitively, an SC-cycle indicates a non-serializable inter-
leaving. For example, Figure 2(a) allows the problematic
interleaving T1,1, T2,1, T2,2, T3, T1,2.2

Naive construction of the SC-graph. To apply the the-
ory of transaction chopping in our context, a chain cor-
responds to a chopped transaction and its hops are the
pieces. Thus, in the SC-graph, S-edges connect the hops
of a chain, while C-edges mark potential conflicts be-
tween hops of different chains. Static analysis cannot
determine exactly what data items a hop accesses (which
rows); therefore, we conservatively add a C-edge between
two hops of different chains if the hops access the same
table and an access is a write. Since instances of the
same chain may be in conflict, the SC-graph includes two
instances of every chain3. We must also consider sys-
tem sub-chains caused by user chains (recall that system
chains are automatically created to update derived tables
when base tables change); we want these sub-chains to be
serialized with the originating chain. A simple idea is to
combine a user chain and its sub-chains in the SC-graph:
when a user chain hop modifies a base table, the hop is
expanded into the sub-chains that update derived tables.
Later, in Section 4.2, we improve on this simple idea.

As an example, consider the auction application from
Section 2 (Figure 1), with the three chains: Tbid for plac-
ing a bid, Titem for adding an item to be auctioned, and
Tread for browsing an item. Tbid has two hops, while the
others have one hop. For simplicity, let us ignore the
system chains. Figure 3 shows the resulting SC-graph.
There is an SC-cycle involving two instances of Tbid , so
this chain cannot safely execute piecewise.

4.2 Improving chances for piecewise execution
When we naively apply the theory of transaction chop-

ping, we find little opportunity for piecewise execution,
because SC-cycles are everywhere! Below, we consider

2This interleaving is bad because it creates a cycle in the serial-
ization graph [54], where T1 precedes T2 (as T1,1 precedes T2,1 in the
interleaving), T2 precedes T3 (as T2,2 precedes T3), and T3 precedes T1
(as T3 precedes T1,2).

3Two instances suffice, since an SC-cycle with more than two in-
stances implies an SC-cycle with only two instances.
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Figure 3: SC-graph for a simple auction service (Figure 1)
with three chains: Tbid , Tadd , Tread . There are two instances
of Tbid and Tadd to account for self-conflict. The graph has
an SC-cycle involving the two instances of Tbid .

write in X

T(instance 2) write in X

write in X update X' update X"

write in X update X' update X"
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sub-chain: 
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Figure 4: Lynx automatically generates sub-chains to up-
date derived tables X ′ and X ′′ of base table X . The sub-
chains cause an SC-cycle.

the problems and propose ways to avoid these cycles.

User chains. User chains can have spurious C-edges
because the notion of conflict is coarse-grained, being
based on table accesses. This problem is exacerbated by
self-conflicts between instances of the same chain. In
Figure 3, Tbid modifies two tables, creating an SC-cycle
on its own instances. Closer inspection reveals that the
hop “insert to Bids” inserts a row with a unique id; this
hop commutes with itself, so it does not self-conflict.
Developers can use annotations to indicate that the hop
self-commutes, which removes the C-edge between its
instances, breaking the cycle. Other systems also exploit
commutativity [38, 47, 50], but in different ways.

User chains may have unnecessary S-edges: a user
chain may have hops that need not be serialized together,
but were placed in the same chain because they require
all-or-nothing atomicity. In that case, programmers can
separate these hops into different chains and execute them
as linked chains (Section 3), which also provide all-or-
nothing atomicity but avoid S-edges.

System chains. Many self-conflicts arise among the sys-
tem sub-chains created by Lynx to update derived tables.
Figure 4 shows a one-hop user chain that modifies a base



table causing a system chain. Because a chain and its
resulting system chains should be serialized together as
one transaction, we consider the combined chain in the
SC-graph. This chain unfortunately causes an SC-cycle
on its two instances, because of self-conflicting hops with
updates that do not always commute (Figure 4).

We eliminate these cycles using the origin ordering
guarantee of chains. Specifically, sub-chains updating
identical rows in derived tables either commute or start
by updating the same base table row at the same server.
In the latter case, origin ordering ensures that these sub-
chains are consistently ordered and thus need not be
connected in the SC-graph. Note that origin ordering
cannot eliminate C-edges in user chains, because the
static analysis cannot determine if two user chains start
at the same server: that depends on what table shard they
access, which may be determined only at run-time.

Complete construction of the SC-graph. With the
above ideas, we modify the naive construction of the
SC-graph (Section 4.1) as follows. First, we omit sys-
tem chains and only consider user chains when adding
C-edges. A user chain may read from derived tables but
can never directly modify them. Thus, two hops from dif-
ferent (instances of) user chains have a C-edge between
them iff (1) both hops access the same base table and
an access is a write, or (2) one hop reads from a derived
table T and the other hop modifies a base table from
which T derives. Additionally, if two hops are annotated
as commutative, we do not add a C-edge between them.
Finally, chains that are linked are included as separate
chains in the SC-graph; the fact they are linked does not
affect the SC-graph.

4.3 A word on preserving order
The techniques we described do not ensure external

consistency or order-preserving serializability [32, 54].
Order-preserving serializability requires that if a transac-
tion commits before another one starts, the first appears
before the latter in the equivalent serial order. The anal-
ogous property for chains does not hold: a client may
submit chain T2 after chain T1 returns (after committing
T1’s first hop), but T2 may be serialized before T1.

There are two ways to address this issue, if necessary.
First, there is a barrier operation that blocks a client
until its outstanding chains complete. This is analogous
to memory barriers in multiprocessor systems, which
allow programmers to enforce ordering when necessary.
For example, the operation to change a user’s privacy
settings should be followed by a barrier. Doing so is akin
to enforcing application-defined explicit causality rather
than every possible causality [8]. Second, we can provide
the simple guarantee of read-my-writes [52], which in
our setting ensures that a client sees the entire effects of
her previous chains (even if they return early), a useful

property in practice. We explain how Lynx ensures this
property in Section 6.2.

4.4 Restrictions and typical usage

Transaction chains can reduce user-perceived latency
but there are some restrictions on its use. First, program-
mers must explicitly divide a transaction into a chain such
that (1) only its first hop contains a user-initiated abort
and (2) the chain is static in that the shards it accesses
at each hop are known before the chain starts executing.
This is akin to requiring transactions to have known read
and write sets, so one might apply the ideas of [53] to sys-
tematically transform a general transaction into a static
one. Second, to achieve low latency, programmers must
design the chains so that, most of the time, the application
can proceed after the chains complete their first hop (or
first few hops). As discussed earlier, returning after the
first hop may result in the loss of external consistency
and, if misused, can generate user-perceived anomalies.

Having discussed the restrictions, we describe our ex-
perience in using transaction chains for Web applications.
We focus on Web applications where users interact, which
require scalability and low latency. In such applications,
we recommend co-locating data owned by the same user
in the same datacenter (possibly with geo-replication).
To process a typical user request, one uses a transaction
chain which first modifies a user’s own data and then
updates other users’ data or global data. We give two
examples.

First, in a social networking application, suppose that
user X posts a message on the wall of a friend Y. To
execute this request, a transaction chain first modifies
X’s data by inserting X’s message in the message table,
and then updates Y’s data by inserting the message id
into Y’s wall in the wall table. As a second example, in
Figure 1 the chain for placing a bid first inserts the user’s
bid into the bid table and then changes global information
by updating the high price in the items table.

Since an application usually processes a request at the
datacenter that stores the requesting user’s data, a chain’s
first hop can complete quickly. In both examples, the
application returns control to the user after the first hop.
The lack of external consistency is partly compensated
by the optional read-my-writes guarantee of chains: in
the first example, with read-my-writes user X is guar-
anteed to see her own message when she browses Y’s
wall. However, unlike the external consistency guarantee,
if X tells Y about her message using external channels
(e.g., the phone) and Y checks his wall, Y may not see
X’s message. This is an anomaly that applications must
tolerate when taking advantage of transaction chain’s low
latency.



CREATE ENTITY_GROUP UserEnt {key int};

CREATE TABLE Bids IN_GROUP UserEnt {
bidder ALIAS UserEnt.key,
bid_id int AUTOINCREMENT,
seller int,
item_id int,
price float

} PRIMARY_KEY(bidder, bid_id);

Figure 5: Syntax for defining the Bids base table, whose
rows are co-located with those from other tables in the
same (UserEnt) entity group.

//a materialized view joining Bids and Users
//on Bids.bidder = Users.uid
CREATE DTABLE Bids-Users IN_GROUP UserEnt

FROM Bids, Users {
bidder ALIAS UserEnt.key <-- Bids.bidder,
bid_id <-- Bids.bid_id,
bidder_name <-- Users.name,
seller <-- Bids.seller,
} JOIN(Bids.bidder = Users.uid);

// secondary index for Bids-Users indexed by seller
CREATE DTABLE Bids-Users_seller IN_GROUP UserEnt

FROM Bids-Users {
seller ALIAS UserEnt.key <-- Bids-Users.seller,
bidder <-- Bids-Users.bidder,
bid_id <-- Bids-Users.bid_id
bidder_name <-- Bids-Users.bidder_name,
} INDEX_KEY(seller);

Figure 6: Syntax for defining derived tables. The join table
Bids-Users unites Bids and Users tables with the join key
Bids.bidder. The secondary index table Bids-Users seller
further indexes the join table on the seller column.

5 Lynx Architecture
We give an overview of Lynx’s system design. We first

explain its interface to applications (§5.1), then describe
its system architecture (§5.2).

5.1 Programming interface
Lynx’s API consists of a simple language for describ-

ing table schemas, and a client-side library for writing
chains.

Creating tables. Programmers use a SQL-like syntax to
define table schemas. Tables are partitioned by rows ac-
cording to their primary keys. Programmers can provide
hints for co-locating partitions from different tables using
entity groups [10, 22].

Figure 5 shows the Bids table schema for the auction
example of Figure 1. The CREATE TABLE. . .IN GROUP
syntax creates a table co-located with the given entity
group. The table inherits the key of the entity group as a
column, which can be renamed using ALIAS. The entity
key must be part of the table’s primary key. Here, each
row of Bids is co-located with the user placing the bid.

Figure 6 shows how to define derived tables for sec-
ondary indexes and materialized join views. Bids-Users
is a join table that unites tables Bids and Users on the

1 //chain definition
2 place_bid = new Lynx.tx_chain;
3 place_bid.add_hop('insert_bid',
4 function(ctx) {
5 var row = @Bids.insert(ctx.args.bidder,
6 ctx.args.item_id, ...);
7 ctx.bid_id = row.bid_id;
8 }
9 );

10 place_bid.add_hop('update_price',
11 function(ctx) {
12 var seller = ctx.args.seller;
13 var id = ctx.args.item_id;
14 var curr_price = @Items.lookup(seller, id).price;
15 if (price > curr_price) {
16 @Items.update(seller, id).price = price;
17 }
18 );
19 //commutativity annotation
20 Lynx.commutes(place_bid.hops['insert_bid'], @self);
21 Lynx.commutes(place_bid.hops['update_price'], @self);
22
23 //chain execution
24 place_bid.execute({
25 args : {
26 bidder : 9999,
27 seller : 8888,
28 item_id : 123,
29 price : 1.09
30 },
31 //chain is in Session associated with user id 9999
32 session : UserSession[9999],
33 return_after_first : true
34 });

Figure 7: JavaScript API for writing a user chain. The
example shows the chain for placing a bid in the auction
service.

join key Bids.bidder. Bids-Users seller is a secondary
index table for the join table on the seller column. This
table allows one to find the names of bidders who placed
bids on items sold by a given user. The <-- syntax serves
to copy a column from the base table. Currently, Lynx
supports only joins based on equality of indexed keys.

Creating and using chains. All operations are per-
formed using chains. Figure 7 shows the chain for placing
a bid using Lynx’s JavaScript API. The chain has two
hops, one to insert the bid (line 3) and another to update
the current highest bid price of the item (line 10). Each
hop has access to the chain’s context (ctx) which contains
input arguments of the chain. Lynx exposes relational
tables as auto-generated table objects whose names start
with ‘@’. This syntax simplifies the static analysis tool
that generates the SC-graph. Since ‘@’ is not allowed in
JavaScript identifiers, it is removed before execution.

Programmers can read or write base tables (e.g., line
5 and 14); derived tables are updated only by the sys-
tem. Programmers can specify commutative relationships
(lines 20–21 specify hops that self commute). When ex-
ecuting a chain, programmers can optionally indicate a
session for the chain (line 31). Lynx ensures that chains
in a session see the writes of chains in the same session
that have already returned (read-my-writes). We explain



how Lynx provides this guarantee in Section 6.2.

5.2 System Overview
A Lynx system consists of a number of geo-distributed

datacenters, each of which contains many machines. A
machine runs many logical Lynx servers in the same pro-
cess. This improves concurrency as having more (logical)
servers imposes fewer constraints under origin ordering.
The rows of a table are partitioned into shards based
on row keys; that is, a shard is a set of rows of a table.
The rows of a shard are replicated across the same set of
servers, as we now explain.

Geo-replication. Data shards can have geo-replicas
across data centers. Geo-replicas are configured by a
configuration service that assigns each shard to a replica
group, which consists of a set of Lynx servers spread
across datacenters. Geo-replication across data centers is
implemented by Lynx using system chains as explained in
Section 6. To avoid having conflicting updates at different
replicas, Lynx uses home geo-replicas, similar to Wal-
ter [50]: each replica group has a designated server called
the home geo-replica or home server, and the system
forwards all updates on a shard to its home geo-replica.
The home geo-replica can be chosen intelligently to be
the server where updates are most likely to occur. For
example, a Web application may have a replica group for
each user, where the home geo-replica is in a datacenter
close to the user.

Local replication and cluster storage system. Data
shards may also be replicated within a datacenter to pro-
vide fast fail-over. This replication is provided by a clus-
ter storage system that provides synchronous updates and
transparent failover; such a service is implemented using
well-known techniques (e.g., [14, 31]).

Lynx also uses the cluster storage system to syn-
chronously replicate internal metadata across buddy data-
centers. Two datacenters are buddies if they are near
enough to communicate with low latency, yet far enough
so that one datacenter is safe from a disaster that affects
the other. For example, this criterion may be met by data-
centers that are a few hundred miles apart with roundtrip
latencies of several ms, which is comparable to disk laten-
cies. Lynx relies on buddies only to geo-replicate some
internal metadata; application data can be geo-replicated
using chains across any datacenters chosen by the devel-
oper, not just buddies.

Configuration service. Lynx relies on a separate config-
uration service to maintain the mapping from each shard
to its replica group. Our design of this service follows
other systems [18, 50, 51]. Nodes consult the service to
determine the server responsible for a given shard. This
information is subsequently cached. Each server obtains
a lease for its responsible shards and rejects requests des-
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Figure 8: Lynx client library and server processes. The
client dispatches chains using RPCs. The server process
receives chains, queues them, and executes them against
a local database. The server process also implements geo-
replication, secondary indexes, and materialized join views
using system chains.

tined for other shards. The configuration service itself is
implemented via a Paxos replicated state machine.

Chain analysis. Prior to application execution, Lynx stat-
ically analyzes chains based on application code and table
schemas (§4.1). The analysis outputs SC-cycles, if any.
Programmers can use this information to add annotations
or use linked chains to break the cycles (§4.2).

6 Chain execution in Lynx
We now describe how chains work at runtime. We

give an overview of the implementation (§6.1), and then
explain the details on how Lynx ensures the various chain
properties (§6.2) and how it uses system chains (§6.3).

6.1 Overview
Chains are implemented by the Lynx client library and

server process (Figure 8). The client dispatches a chain
to its first hop, at a server storing the data accessed by
the hop. If the first hop writes data, the client chooses
the server in the shard’s home datacenter; otherwise, it
chooses a server in a nearby datacenter that has a replica.

The first server of a chain coordinates its execution
in a coordinator thread. The coordinator first stores in-
formation about the chain in its history table kept in the
cluster storage system. The history table keeps the chain
id, the chain parameters from the client, and the origin
ordering sequencers (§6.2). The coordinator may execute
the chain piecewise or as a distributed transaction.

To execute the chain piecewise, the coordinator se-
rially executes each hop of the chain, by invoking the
appropriate server (the first server is local) and waiting
for a completion acknowledgement. After the first server
executes its hop, the coordinator returns an indication
of first-hop completion to the client library. Then, if the
server executed a hop that modified data, it spawns in
parallel sub-chains to update derived tables, if any. These
sub-chains are coordinated by the server and execute like
any other chain—in particular, Lynx ensures origin order-
ing based on where the sub-chains start. The server waits



Property Technique
per-hop isolation local database transactions
all-or-nothing atomicity chain replay and history table
inner ordering serial execution
origin ordering pairwise sequencers
read-my-writes origin ordering and read sub-chains
linked chain atomicity super-coordinator

Figure 9: Techniques used to ensure the chain properties
using piecewise execution.

for the sub-chains to complete before sending an ack to
the coordinator of the higher-level chain.

If a chain cannot execute piecewise, the coordinator
executes it as a distributed transaction using standard
two-phase locking and two-phase commit [12, 22].

6.2 Providing chain properties
We now explain how Lynx provides the properties of

chains (§3) when chains execute piecewise. Figure 9
gives a summary. These techniques are efficient as they
require little or no coordination across servers.

Per-hop isolation. Lynx stores each shard at one server.
Because each hop of a chain accesses one shard, we can
ensure per-hop isolation by simply executing it using
a local serializable database transaction. Our current
implementation requires shards to fit on a single machine,
but it is possible to generalize this to split a shard among
several machines and substitute local transactions with
distributed transactions within a single datacenter.

All-or-nothing atomicity. If the first hop of chain com-
mits, subsequent hops are executed exactly once despite
failures. Lynx ensures this property by replaying chains
that stop due to failures, using history tables to prevent
duplicate execution, as we now explain.

Recall that a coordinator orchestrates the execution of
a chain. We must address three failure types that break
chain execution: (1) crashes of a Lynx server, (2) crashes
of the coordinator, and (3) failures of an entire datacenter.

(1) A Lynx server crashes while executing a hop. In
this case, the system recovers the server as described in
the next paragraph, and the coordinator resubmits the hop
for execution. To avoid duplicate execution, every Lynx
server keeps a history table, similar to [44]. This table
is kept in the same storage system as the server’s tables;
it records, for every hop that the server completes, its
chain id, hop number, and any output produced by the
hop to be passed forward in the chain. To be consistent,
the history table is updated using the same transaction
that updates the server tables during the hop execution.
Before executing a hop, each server checks its history
table to see whether the hop has already executed and,
if so, skips execution. This checking is also done in the
same transaction that updates the history table.

The server then notifies the coordinator that the hop is
done, attaching the hop’s output. The server deletes the
hop entry from its history table when it gets an acknowl-
edgement from the coordinator. The coordinator updates
the current progress of the chain in its history table; it
deletes the chain’s entry after the entire chain completes.

To recover a Lynx server, the system can optionally
store the server’s data in a cluster storage system within
the datacenter. In that case, recovery is simple: the system
starts a new server and reconfigures the replica group to
replace the old server with the new one. The new Lynx
server operates on the same data as the old server using
the cluster storage system.

If the Lynx server does not use the cluster storage
system, or the cluster storage system is crashed, then
recovery relies on geo-replication and reconstruction. Be-
fore using a geo-replica, the system must ensure it is
up-to-date, by restarting and waiting for the completion
of any replication sub-chains that might be coordinated
by the failed Lynx server; how this is done is explained
in (2) below. Derived tables might not be geo-replicated;
these tables are reconstructed using the base tables. Then,
the system reconfigures the replica groups to replace the
failed server with a server holding the geo-replicas or
reconstructed tables.

(2) The coordinator crashes while executing a chain.
In this case, the system restarts the coordinator at another
host. The new coordinator determines the outstanding
chains using the history table of the previous coordinator,
which is kept in the cluster storage system. To handle
datacenter failures (see below), the coordinator’s cluster
storage system is geo-replicated at buddy datacenters
(§5.2). (Note that the cluster storage of the coordinator
is separate from the cluster storage of a Lynx server—
only the former uses buddies; the latter is contained in a
single datacenter.) For each outstanding chain, the new
coordinator replays the chain from its first hop, executing
one hop at a time using the origin ordering sequencers
stored in the history table. Servers that already executed
the chain avoid duplicate execution as explained above.

(3) An entire datacenter is destroyed or becomes un-
available beyond a time threshold. In this case, the sys-
tem first recovers the Lynx servers using geo-replicas
and reconstruction, as described in (1). Then, the system
recovers from crashed coordinators, as described in (2).

Inner ordering. This property is provided by executing
hops in the order in which they appear in the chain.

Origin ordering. A naive way to provide this property
would be for coordinators to execute one chain entirely
before starting the next chain. This scheme has low con-
currency and poor performance.

Instead, we use pairwise sequencers: each server i
keeps n counters ctri→1...ctri→n, where n is the num-



ber of servers in the system. Server i also keep tracks
of the latest sequence number that it has processed
from each other server, done1→i...donen→i. Suppose a
chain with k hops is to execute on servers s1,s2, ...,sk.
The first server, s1, increments the respective counters
ctrs1→s1 ,ctrs1→s2 , ...,ctrs1→sk for each hop of the chain
and attaches them to the chain as sequence numbers
seqs1→s1

,seqs1→s2
, ...,seqs1→sk

. Each of the servers si
waits until its counter dones1→si reaches seqs1→si

−1 be-
fore executing its corresponding hop in the chain.

This mechanism ensures origin ordering: suppose
chains C1 and C2 start at the same server i and both ex-
ecute later hops at server j. If C1 executes before C2
at server i, the sequence number seqi→ j of chain C2 is
greater than that of C1, causing C2 to execute after C1 at
server j. If a chain visits some server i multiple times, the
hops at i will be assigned consecutive sequence numbers
and thus will not be interleaved with other chains, thereby
preserving the origin ordering property.

The message overhead for enforcing origin ordering
is low: the number of sequence numbers attached to a
chain is proportional to its length. Origin order may
sometimes introduce latency overheads, but this is the
behavior we desire for consistency. Specifically, if two
chains start at the same server and follow different paths
before overlapping again at another server, the first chain
may delay the second chain.

Read-my-writes in sessions. This property ensures that
a chain in a session sees the writes of chains in the same
session that have already returned. To do so, the applica-
tion associates a session with a server, and Lynx forces
all session chains to start at that server by adding a no-op
first hop if necessary. A possible optimization in practice
is to pick a server where most session chains start any-
ways, to avoid adding the no-op hop. If a session chain
reads from a base table, then origin ordering ensures the
read-my-writes property. If a session chain reads from
a derived table, Lynx executes the read hop differently
from a regular chain: Lynx submits the read hop at the
base table, which then starts a sub-chain to read the de-
rived table. By doing so, the read of the derived table is
ordered consistently with the operations on the base table,
which in turn are correctly ordered by origin ordering. If
a derived table has two base tables (a join table), Lynx
submits the read at each base table in some arbitrary order
and keeps the result of the later read.

Atomicity of linked chains. To execute a series of linked
chains, the coordinator of the first chain serves as a super-
coordinator. The super-coordinator stores the linked
chains in its history table, for recovery, and then launches
the chains one at a time at their first hop. When the chain
completes, the super-coordinator marks completion in
the history table. If the super-coordinator fails, recovery
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Figure 10: The chains for inserting a new row and updat-
ing an existing row’s secondary index. Base table T has a
secondary index table T Ksec.
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Figure 11: The chains for inserting a new row and updat-
ing an existing row’s join key value. Base tables LT and
RT have secondary index tables, LT K join, RT K join (corre-
sponding to the join key K join) and a join table LT-RT.

is similar to that of a coordinator.

6.3 System chains
Recall that system chains are generated internally by

Lynx to update derived tables. There are three types of
system chains, one for each type of derived table.

Chains for geo-replication. When a hop of the chain
wishes to modify a geo-replicated base or derived table,
the hop is forwarded to the corresponding shard’s home
datacenter for execution. The responsible server at the
home datacenter generates a sub-chain to propagate the
modification to replicas at other datacenters. Because
of the origin ordering property of these sub-chains, all
replicas are updated in the same order.

Chains for secondary index tables. When a row
is inserted, deleted, or updated in a base table, the
server where the modification occurred spawns a sub-
chain to modify the index tables. (If an index ta-
ble is geo-replicated, the corresponding server at the
home datacenter generates additional sub-chains for geo-
replication.) The sub-chain has one or two hops for each
index table: if the indexed value does not change, one
hop suffices to update the index table; if the indexed value
changes, the old and new rows of the index table may
belong to different shards, in which case two hops are
needed, one to delete the old row, the other to insert the
new row. Figure 10’s top chain shows the case where
only one hop is needed.

Chains for join views. To update materialized join
views, we apply ideas from incremental join view up-
date algorithms [13], using chains to correctly update the



views. Figure 11 shows the sub-chains for updating the
derived table LT-RT, which joins two base tables LT and
RT on join key K join. We assume that the join key K join is
not the primary key of LT or RT (the case when the join
key is a primary key is simpler). Therefore, in order to
create the join view, programmers are required to add in-
dex tables (LT K join, RT K join) indexing the join key. For
updating a join view, there are two cases depending on
whether the base table modification changes the existing
value of the join key column. The top chain of Figure 11
illustrates the case when no existing value of the join key
column is changed with an insert operation to the base
table LT. In this case, the sub-chain updates both LT’s
secondary index table for the join key (LT K join) and the
join table LT-RT using a local read-write transaction. The
use of a local transaction is possible because the affected
rows of the index and join tables LT K join, RT K join and
LT-RT are co-located in the same shard. The bottom chain
of Figure 11 is generated when the existing value of the
join key column is changed. In this case, two additional
hops are required to maintain LT-RT, one to delete the
existing value, another to add the new value.

The join table may also have other index tables derived
from it. In this case, Lynx spawns parallel sub-chains
that start from the updated join table shard and update
those index tables.

The correctness of the join process is assured by two
features of the chains. First, with origin ordering, mod-
ifications on the same row of LT interleave correctly.
Second, with per-hop isolation, the local read-write trans-
action updating LT K join, RT K join, and LT-RT ensures
that LT-RT is always the join of the secondary indexes
LT K join and RT K join. This reduces the correctness of
updating the join table to the correctness of updating
secondary indexes, which is evident.

7 Implementation of Lynx
The Lynx server and client library consist of ≈5000

lines of C++ code, plus 3500 lines for a custom RPC
library. Programmers specify user chains using Lynx’s
JavaScript API; a Lynx utility reads the application table
schemas and generates JavaScript objects that program-
mers use to read and update each table. When executing
a user chain, the coordinator transfers the JavaScript code
of each hop to the appropriate server, which then caches
and executes the code using the V8 JavaScript engine.

The implementation stores tables in a custom storage
system rather than a local database system. The custom
system keeps tables in memory with transactional logging
to stable storage.

Our current prototype misses four pieces from the de-
sign. First, it lacks the configuration service, instead rely-
ing on a static configuration file to indicate what server
has what shards. Second, a Lynx server and coordinator

have their stable storage on a local disk, not a cluster stor-
age system. Third, our prototype does not yet implement
the recovery protocol (Section 6.2) for handling server or
datacenter failures. Fourth, there is no implementation
for executing a chain as a distributed transaction.

8 Applications
We implemented three applications using Lynx: a so-

cial network website (L-Social), a microblogging ser-
vice (L-Twitter), and an auction service (L-RUBiS). The
applications use secondary indexes and join views ex-
tensively, and all of their chains can execute piecewise.
This required modifying some chains slightly (while re-
taining the same behavior). In particular, a user chain
which reads a base table and its derived table creates an
SC-cycle. We addressed this by duplicating the needed
columns of the base table in the derived table, so a user
chain needs to only read the derived table.

Social networking. The L-Social application imple-
ments the basic operations of a website like Facebook
(e.g., befriending users, posting to walls). L-Social has 5
base tables: Graph, Status, Users, Wall, Activities. There
is one join table GraphActivities with a secondary index
to allow a user to read her friends’ activities quickly, with
one lookup to the secondary index.

To befriend users A and B, the application must cre-
ate two friendship edges and two new-friend activity
announcements, one for each user. A naive design uses a
chain with four user hops, two for inserting into Graph,
two for inserting into Activities. This chain creates an SC-
cycle with C-edges from each Graph insertion hop to the
one-hop read-activity chain that reads the secondary in-
dex of GraphActivities. To avoid this cycle, we break the
befriend chain into three linked chains: one chain inserts
the friendship edges, two chains each insert once into
Activities. The first chain still has an SC-cycle with the
unfriend chain and itself. We break this cycle by making
the insertion/deletion of friendship edges a commutative
operation: we use a counter column in the Graph table,
and we increment/decrement the counter to insert/delete
edges. This is similar to the counting sets in Walter [50].

When user A posts a status message, L-Social uses
a chain to insert the message into Status and add the
announcement “A has changed her status” to Activities.
Both hops commute with themselves. A similar chain is
used to post messages on walls. The join table GraphAc-
tivities allows a user to read the activities of his friends
in one hop.

A final static analysis indicates an SC-cycle: the 1-hop
read chain to show a user’s friends has an SC-cycle with
the 2-hop befriend (or unfriend) chain: the read hop has
two C-edges, to each hop of the befriend (or unfriend)
chain. We use application knowledge to determine that
this SC-cycle is spurious: since a user never befriends



himself, the read hop conflicts with at most one of the
hops of the befriend chain, so only one of the two C-edges
is a real conflict.

Microblogging. L-Twitter is a simple Twitter clone with
tables and schemas modeled after [36]. There are three
tables: Users, Tweets, Graph. Graph differs from L-
Social’s Graph because it captures an asymmetric fol-
lower relation.

A common Twitter operation is to show a user’s
timeline—the collection of tweets posted by users that
the user follows. Twitter’s original implementation on
a one-node MySQL server performs a join query be-
tween Graph and Tweets [36]. Twitter’s current dis-
tributed implementation no longer uses joins, but rather
manually maintains the timeline of each user in mem-
cached. L-Twitter follows the original implementation
by using a distributed join table GraphTweets (replicat-
ing only the tweet id not its text) based on the join key
Tweets.creator = Graph.followee with a secondary index
on Graph follower. By querying this index, L-Twitter
can display a user’s timeline by contacting only one
server. We chose this much simpler implementation to
demonstrate the materialized joins of Lynx.

There are two limitations in the current design of L-
Twitter. First, when user X starts to follow Y, the un-
derlying join chain inserts all of Y’s existing tweets into
X’s timeline (the secondary index of GraphTweets). It
would be better to insert only Y’s recent tweets. This
can be done adding a selection operation to the join view,
to filter out old tweets with a smaller timestamp than
the follow edge timestamp. Supporting such selection
operations in Lynx is future work. Second, when a user
with many followers tweets, there are large overheads
to update their followers’ timelines. Thus, L-Twitter’s
current push-based approach should be combined with
pull-based queries for users marked as popular [49].

Auction service. L-RUBiS is a port of the auction web-
site in the RUBiS benchmark [1, 7]. The original RUBiS
implementation is based on PHP using a local MySQL
database system. We ported the RUBiS schema to Lynx
and re-wrote its PHP functions in JavaScript. L-RUBiS
has 10 sharded tables with 13 secondary indexes in total,
where a table has at most 3 secondary indexes. We use
a join table to unite the User table, which maps uids to
usernames, and the Comments table, which records users’
comments. This table allows L-RUBiS to quickly find
usernames of users who commented on a seller.

There are two noteworthy user chains, one to process
bidding requests (discussed in §2), the other to handle
new user registration while ensuring unique usernames.
In our first design, a register-user chain checks if a cho-
sen username already exists in a secondary index of User
based on usernames; if not, the second hop inserts the

user into the User table. This chain has an SC-cycle
between two of its instances. We subsequently changed
L-RUBiS to use an additional table, Usernames, which
contains all the usernames that have ever been created.
The register-user chain first checks that the chosen user-
name is absent in Usernames (and if so inserts it there)
and in the second hop adds the user to Users. If the
chosen username is already taken, the second hop does
nothing. The chain still has an SC-cycle with itself, but
this cycle is spurious: if two register-user chains conflict
on the first hop (due to both having the same username),
then one of the chains sees that the username is already
taken in its first hop and does nothing in its second hop,
so there are no conflicts in the second hop.

9 Evaluation
We measure the performance of Lynx and its applica-

tions across geo-distributed datacenters. The highlights
are the following:
• Application operations have good throughput and low-

latency, despite geo-replication. The first hop of all
chains execute quickly, and so user-perceived latency
is only a few milliseconds.

• Lynx scales well. As we increase the number of servers
in each datacenter from 1 to 8, aggregate chain through-
put grows by a factor of more than 6.

9.1 Experimental setup
We perform experiments on Amazon EC2 using three

availability regions, East Coast, West Coast and Europe,
with the following roundtrip latencies between them:

West Coast Europe
East Coast 82ms 102ms
West Coast 153ms

Unless otherwise stated, in all experiments each re-
gion has 4 Lynx servers and 4 client machines, where a
machine is an extra-large instance with 15GB of RAM
and 4 virtual cores. The geo-replication factor is two
datacenters. We perform three runs for each experiment
and report the average. (Standard deviations were low.)

9.2 Microbenchmark
We evaluate three types of chains. In the simple-n

experiments, a client operation is a chain with n hops,
each inserting a row into a different base table. In the
secondary index experiment, a client operation inserts a
row into a table with a secondary index, resulting in a
system chain of 2 hops. In the join experiment, a client
operation inserts a row into the LT base table which has
both a secondary index table and a join table (with another
base table). In all chains, the first hop executes in the local
datacenter and the subsequent hops execute in different
remote datacenters. All chains run only C++ code at
servers.

We perform two sets of experiments, one without geo-
replication, one with geo-replication factor of two. Even



NO GEO-REPLICATION GEO-REPLICATION AT 2 DATACENTERS
Chain type Throughput First-hop lat. Completion lat. Throughput First-hop lat. Completion lat.

(K chains/s) (50%; 99%) (50%; 99%) (K chains/s) (50%; 99%) (50%; 99%)
simple-1 3,570 3.1ms; 3.3ms 3.1ms; 3.3ms 1,770 3.1ms; 3.6ms 84ms; 90ms
simple-2 1,630 3.1ms; 3.4ms 86ms; 88ms 872 3ms; 3.8ms 266ms; 283ms
simple-3 1,190 3.2ms; 3.3ms 253ms; 257ms 512 3.1ms; 3.8ms 607ms; 656ms
secondary index 1,220 3.1ms; 3.4ms 84ms; 88ms 590 3ms; 3.3ms 258ms; 291ms
join 808 3.1ms; 3.4ms 89ms; 99ms 453 2.8ms; 3.3ms 268ms; 299ms

Table 1: Microbenchmark throughput and latency results.

in experiments without geo-replication, data is spread
over the three EC2 regions.

Chain throughput. Table 1 shows Lynx’s throughput in
thousands of chains/s. We first examine the experiments
without geo-replication (left of table). The simple-1 ex-
periment provides a baseline aggregate throughput of
3,570K chains/s using 12 servers in 3 datacenters. We
expect the throughput of simple chains with m hops to be
≈1/m the throughput of a 1-hop chain. The experiments
confirm this. Throughput drops by over half going from
simple-1 to simple-2 because in simple-1 only clients
forward chains whereas in simple-2 servers also do that.

The system chain for updating the secondary index ta-
ble has two hops and its aggregate throughput is 1,220K
chains/s. This is lower than simple-2 because of the over-
head of checking if a table modification needs a system
sub-chain and if so, coordinating the system sub-chain.
The throughput of the join experiment is 808K chains/s,
much lower than in the secondary index experiment, even
though both chains have two hops. This is because the
second hop of the join chain requires more computation:
it reads rows from the RT table and inserts them into the
join table, all in a local transaction (Figure 11). In the
experiments, we pre-populated the RT base table so that
there are 6 rows to be read and inserted into the join table
every time a chain modifies a single row in LT.

Chain latency. Table 1 shows the median and 99-
percentile latency for completing both the first hop and
the entire chain. The experiments were done under low
load and we measured the latency of chains starting in
the West Coast. Since the first hop of a chain executes
in the local datacenter, first-hop latency is below 4 ms
(99-percentile) across workloads. This latency number
is optimistic for two reasons. First, it does not reflect
disk latency: although our server implementation syn-
chronously writes its log to disk, the disk latency is ab-
sorbed by on-disk caching which cannot be disabled in
EC2. Second, it does not reflect the delay in replicating
the chain coordinator’s log to a nearby buddy datacenter:
our prototype currently logs to the local disk as opposed
to a cluster file system.

Compared to the first hop latency, the total completion
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Figure 12: L-Twitter operation throughput

latency is much longer, as each subsequent hop executes
in a different datacenter. For example, the median com-
pletion latency for a simple chain of length 2 (no repli-
cation) is 86ms, and it grows to 253ms when the length
is 3.

Geo-replication performance. The right part of Table 1
shows experiments where all base and derived tables are
geo-replicated at two datacenters. Geo-replication re-
duces throughput by half compared to the left results,
because it produces twice the work; and it increases com-
pletion latency due to the extra communication.

9.3 Application performance
Lynx’s applications are implemented mostly in

JavaScript, except for simple read-only one-hop chains,
which have an efficient C++ interface.

L-Twitter. We evaluate three common operations: read-
timeline for showing a user’s timeline, follow-user for
starting to follow a user, and post-tweet for posting a
tweet. We populate the database with 100,000 users,
each with 6 tweets and 6 followers on average. There are
3 datacenters, and we use different geo-replication levels
for different tables. We geo-replicate the base tables
(Tweets, Graph) at 2 datacenters, but do not geo-replicate
secondary indexes or joins (e.g., GraphTweets), which
can be reconstructed if there is a disaster.

Figure 12 shows the operation throughput of L-Twitter.
For operations that write data, the throughput depends on
how many hops the underlying chain has. The chain for
post-tweet inserts a row into Tweets, updates its replica
across datacenters, inserts 6 rows into the join table
GraphTweets (each user has 6 followers on average) and



Operation First-hop lat. Completion lat.
(50%; 99%) (50%; 99%)

follow-user 3.2ms; 3.5ms 174ms; 176ms
post-tweet 3.1ms, 3.4ms 252ms; 263ms

read-timeline 3.1ms, 3.3ms -

Table 2: Latency of operations in L-Twitter. All chains in
L-Twitter return after the first hop, so first-hop latency cor-
responds to the user-perceived latency. Completion latency
measures when the entire chain completes.

updates the secondary index of GraphTweets, for a total 9
hops (6 of which run in parallel). This results in an aggre-
gate post-tweet throughput of 173K tweets/s. The follow
operation also inserts 6 rows into GraphTweets (each
user has 6 existing tweets), thus having the same number
of hops as post-tweet and achieving similar throughput
(184K ops/s). For follow, all 6 updates to the secondary
index of GraphTweets have the same secondary key and
thus they could have been batched in one RPC. Lynx does
not currently have this optimization. The throughput for
reading a user’s timeline is high, at more than 1.35M
ops/s. This is because the underlying chain only needs to
read (many rows) in one server.

Table 2 shows chain latency for the L-Twitter opera-
tions. All chains return after the first hop, so L-Twitter
achieves low user-perceived latency. The completion la-
tency of post-tweet measures how long its chain takes to
update the geo-replica of Tweets, and update the join table
GraphTweets and its secondary index. The 99-percentile
latency is 263ms, meaning that a tweet quickly appears
in all followers’ timelines.

L-RUBiS. The most interesting chain in L-RUBiS is the
place-bid operation, with a user chain of 2 hops (Figure 7)
plus 4 hops of system sub-chains for geo-replication and
secondary indexes. The aggregate place-bid throughput
is 168K ops/s—3 times lower than the geo-replicated
simple-3 chain, which also has 6 hops (Figure 1). This
difference is because place-bid runs JavaScript user code
at the servers using the V8 engine, which imposes signif-
icant overhead, whereas the simple-3 chain does not.

L-Social. We evaluated a common multi-hop user chain
in L-Social, post-status. Its first user hop inserts a new
status to the Status table and the second user hop adds a
message “User X has changed her status” to Activities.
The system chains generated by the second user hop are
similar to that of post-tweet in L-Twitter. The overall
throughput for post-status is 64K ops/s.

9.4 Scaling
Lynx partitions data across many shards stored at many

servers, to scale with both the number of servers/datacen-
ter and the number of datacenters.

Figure 13 shows the aggregate chain throughput when
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Figure 13: Aggregate chain throughput as the number of
server increases in each datacenter. The experiments run
on three datacenters with no geo-replication.

we increase the number of servers in each datacenter from
1 to 8. The experiments always run on three datacenters,
with our largest experiments having 8× 3 = 24 Lynx
servers and 24 clients. We use the simple-3, secondary
index, and join workloads (without geo-replication) as
described in Section 9.2. We see that Lynx scales well
with the number of servers. This is expected as different
Lynx chains run independently. With 8 servers/datacen-
ter, the aggregate secondary index throughput is 2.38M
chains/s—6.8 times the throughput of 0.35K chains/s for
1 server/datacenter. This is close to linear scaling.

9.5 Comparison with Cassandra/Eiger
We compare the application performance of Lynx to

Eiger [40], a geo-replicated key-value storage system
with write-only transactions and causal+ consistency,
built over Cassandra [2]. We implemented the L-Twitter
operations using Eiger’s column-family key-value data
model. Each user X has a row with four column families:
followers has a list of sparse columns for users that follow
X ; followees has the users that X follows; tweets has the
list of posts written by X ; and timeline has posts from
users that X follows. To post a tweet, user X reads the list
of followers and uses a write-only transaction to insert
the tweet and update the followers’ timelines.

The Eiger experiments use the same setup with 3 avail-
ability regions. We observe an aggregate throughput of
12K tweets/s. By comparison, L-Twitter running on Lynx
achieves 173K tweets/s. Thus, Lynx has better through-
put with serializability while Eiger offers only causal+
consistency. Admittedly, the performance difference can
be an artifact of the two systems’ implementation choices;
an apples-to-apples comparison is impossible.

Lynx uses much less storage space than Eiger. In L-
Twitter, Lynx geo-replicates base tables only once and
derived tables zero times, which suffices for disaster tol-
erance. By contrast, Eiger forces all data to be replicated
at all datacenters, causing a large space overhead.



10 Related work
Geo-distributed storage. Prior geo-distributed systems
face the unpleasant tradeoff between strong semantics
and low latency. Spanner provides strong semantics
with order-preserving serializable transactions [22], but
these are expensive: like its predecessor Megastore [10],
Spanner’s update transactions take many cross-datacenter
roundtrips to execute and commit. Replicated Com-
mit [41] and MDCC [37] are faster but still incur cross-
datacenter latency to execute and commit transactions.

At the other end of the tradeoff, Cassandra [2] and Dy-
namo [24] are key-value storage systems offering even-
tual consistency, while PNUTS [21] offers the slightly
stronger per-record timeline consistency. Other systems
provide stronger but still relaxed semantics to achieve
low-latency. COPS/Eiger [39, 40] offer causal+ consis-
tency where write conflicts are resolved deterministi-
cally. These systems do not support general transac-
tions and moreover COPS/Eiger require replication of
all data across all datacenters. Walter provides parallel
snapshot isolation [50] and Gemini provides Red/Blue
consistency [38]. Apart from weakened semantics, the
latter two systems do not have a scalable design within a
datacenter.

Single datacenter storage systems. Since the net-
work latency within a single datacenter is low (sub-
millisecond), it is generally agreed that the storage system
should provide strong consistency.

The late 80s saw pioneering work in distributed
database systems, such as Gamma [25], Bubba [15],
R* [42], Teradata, and Tandem [26], which aim to pro-
vide the same transactional updates and query interfaces
present in centralized database systems. These systems
pioneered distributed transactions.

Modern single-datacenter storage systems offer vari-
ants of the key-value interface (BigTable [18], H-Base [3],
MongoDB [4]). Recently, there has also been strong in-
terest in transactions, e.g. in Sinfonia [6], Percolator [43],
and H-store/VoltDB [35]. These systems provide dis-
tributed transactions using two-phase commit, which is
efficient within a datacenter. HyperDex [27] uses value-
dependent chains to update replicas consistently within
a datacenter. Value-dependent chains provide a property
similar to chain’s origin ordering.

View maintenance in database systems. There is much
work on maintaining materialized views. Incremental
maintenance schemes typically update base tables and
views in the same ACID transaction [13]. Deferred main-
tenance schemes batch changes to tables, and update
views periodically or when there is a query [20, 34, 55],
for efficiency. Deferred maintenance is often used in
data warehouses where only one update batch executes
at any time [45]. In the same spirit, LazyBase [19] op-

timizes data analytics by batching writes and updating
materialized secondary indexes in epochs.

Only a few systems offer online distributed view main-
tenance and even fewer do so in a geo-distributed setting.
BigTable now supports secondary indexes [17]. PNUTS
added support for secondary indexes and join views that
are asynchronously updated [5]. Lynx also updates de-
rived tables asynchronously, in piecewise chains. Unlike
PNUTS, Lynx uses static analysis to provide serializabil-
ity despite asynchronous updates.

Workflow Management [54]. Transaction chains resem-
ble application workflows in systems like travel planning
or insurance claim processing. An application workflow
naturally consists of many activities, each executing as
a transaction. Like Lynx, workflow systems guarantee
that all activities are eventually executed completely and
exactly once. However, these systems are designed to
manage sophisticated workflows often involving people
actions, while Lynx uses chains to efficiently execute
logical transactions while guaranteeing that entire chains
are serializable.

Transaction Decomposition. The database commu-
nity has explored various aspects in decomposing a
transaction in smaller pieces using SAGAS [30], step-
decomposed transactions [11], transaction chopping [48],
multi-database transactional management [16], and
Spheres of Control (SoC) [23, 33]. Garcia-Molina ob-
serves that if various pieces of a decomposed transaction
commute, a safe execution schedule always exists [29].
Lynx also exploits commutativity, inspired by this and
other work including Walter [50], Gemini [38], and
conflict-free replicated data types [47]. In addition to
commutativity, Lynx also provides the origin ordering
property to reduce conflicts among system chains.

11 Conclusion
Lynx provides serializability with low-latency in geo-

distributed storage systems. The key insight is to express
transactions as chains with multiple hops, and then per-
form a global static analysis of the chains, to find conflicts
and determine when chains can execute piecewise with-
out violating serializability. Chains are also useful for
implementing several features: secondary indexes, mate-
rialized join views, and geo-replication. We demonstrated
the use of Lynx in an auction service, a microblogging
service, and a social networking site.
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