
SwapAdvisor: Push Deep Learning Beyond the GPU
Memory Limit via Smart Swapping

Chien-Chin Huang
New York University

Gu Jin
New York University

Jinyang Li
New York University

Abstract
It is known that deeper and wider neural networks can achieve
better accuracy. But it is difficult to continue the trend to increase
model size due to limited GPU memory. One promising solution
is to support swapping between GPU and CPU memory. However,
existing work on swapping only handle certain models and do not
achieve satisfactory performance.

Deep learning computation is commonly expressed as a dataflow
graph which can be analyzed to improve swapping. We propose
SwapAdvisor, which performs joint optimization along 3 dimen-
sions based on a given dataflow graph: operator scheduling, mem-
ory allocation, and swap decisions. SwapAdvisor explores the vast
search space using a custom-designed genetic algorithm. Evalua-
tions using a variety of large models show that SwapAdvisor can
train models up to 12 times the GPU memory limit while achieving
53-99% of the throughput of a hypothetical baseline with infinite
GPU memory.
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1 Introduction
The deep learning community has been using larger deep
neural network (DNN) models to achieve higher accuracy on
more complex tasks over the past few years [16, 47, 55, 58, 60].
Empirical evidence shows that, since the 80s, the number
of parameters in the state-of-the-art neural network has
doubled roughly every 2.4 years [10], enabled by hardware
improvements and the availability of large datasets. How-
ever, the size of a DNN model that can be explored today
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is constrained by the limited GPU memory (e.g. 16GB for
NVIDIA’s V100 GPU).
Existing work have sought to reduce memory consump-

tion by using lower-precision floating points [12, 24], or
compressing model parameters via quantization and spar-
sification [3, 9, 13–15, 20]. However, these techniques can
affect model accuracy and require heavy hyper-parameter
tuning. Some other solutions discard intermediate data and
recompute them later when needed [2, 11, 29]. However,
they cannot support large models since model parameters
cannot be easily recomputed.
A promising approach to address the GPU memory limi-

tation without affecting accuracy is to swap tensor data be-
tween GPU and CPU memory during DNN computation [26,
30, 40, 49]. Several technological trends make swapping at-
tractive: 1) CPU memory is much larger and cheaper than
GPU memory, 2) modern GPU hardware can effectively over-
lap communication with computation, 3) communication
bandwidth between GPU and CPU is sufficiently good now
and will grow significantly with the arrival of PCIe 5.0 [37]
and the wide adoption of NVLink [26, 36].
Swapping for DNN computation differs from traditional

swapping (between CPU memory and disk) in that the DNN
computation structure is usually known prior to execution,
e.g. in the form of a dataflow graph. Such knowledge un-
leashes tremendous opportunity to optimize swapping per-
formance by maximally overlapping computation and com-
munication. Unfortunately, existing work either do not uti-
lize this information (e.g. TensorFlow’s swap extension [57])
or only use it in a rudimentary way based on manual heuris-
tics [26, 30, 49]. For example, TFLMS [26] and vDNN [40]
swap only activation tensors according to their topological
sort order in the graph. SuperNeurons [49] only swaps data
for convolution operations. As a result, not only do these
work support only limited types of DNNs, but they also fail
to achieve the full performance potential of swapping.
In this paper, we propose SwapAdvisor, a general swap-

ping system which can support various kinds of large model
training and inference with limited GPUmemory. For a given
DNN computation, SwapAdvisor plans for what and when
to swap precisely prior to execution in order to maximize
computation and communication overlap.
A dataflow graph alone is not sufficient for such precise

planning, which is also dependent on how operators are
scheduled to execute and how the memory allocation is
done. More importantly, memory allocation and operator
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scheduling also critically affect the best achievable swapping
performance. SwapAdvisor uses a custom-designed genetic
algorithm to search the space of all memory allocation and
operator schedules so that the final swapping plan represents
the result of joint optimization over operator scheduling,
memory allocation and swapping.

Our evaluation shows that SwapAdvisor can support the
training of very large models up to 12× of the GPU memory
limit. The throughput achieved by SwapAdvisor is 53%-99%
of the hypothetical baseline with infinite GPU memory. Swa-
pAdvisor can also be used for model inference. Inference has
a smaller memory footprint than training. However, to save
cost, one may have multiple models use a single GPU. In this
setup, one can use SwapAdvisor to constrain each model to
use only a fraction of the memory as opposed to time share
the entire memory across models. Our experiments show
that SwapAdvisor achieves up to 4× lower latency compared
to the alternative time-sharing approach.
To the best of our knowledge, SwapAdvisor is the first

general swapping system to support a variety of large DNN
models. Though promising, SwapAdvisor has several limita-
tions (Sec 8). In particular, it requires a static dataflow graph
with no control-flow primitives and plans swapping for only
a single GPU. Removing these limitations requires further
research.

2 Background
DNN training and inference are usually done on a GPU,
which is attached to a host CPU via a high-performance
bus, e.g., PCIe and NVLink. GPU uses different memory
technology with higher bandwidth but limited capacity, e.g.
16GB on the NVIDIA V100. By contrast, it is common for
CPUs to be equipped with hundreds of gigabytes of memory.
Therefore, it is attractive to swap data between GPU and
CPU memory, in order to support training and inference
that otherwise would have been impossible given the GPU
memory constraint.

Modern DNNs have evolved to consist of up to hundreds
of layers, which are usually composed together in a sophisti-
cated non-linear topology. Programming frameworks such as
TensorFlow/MXNet express DNN computation as a dataflow
graph of tensor operators. DNN’s memory consumption falls
into 3 categories:

1. Model parameters. In DNN training, parameters are
updated at the end of an iteration and used by the
next iteration. Parameter tensors are proportional to
a DNN model’s "depth" (the number of layers) and
"width" (the size of a layer). For large models, these
dominate the memory use.

2. Intermediate results. These include activation, gradient
and error tensors, of which the latter two are only
present in training but not in inference.

3. Scratch space. Certain operator’s implementation (e.g.
convolution) requires scratch space, up to one gigabyte.
Scratch space is a small fraction of total memory use.

Existing work use manual heuristics based on the memory
usage patterns of different categories. For example, prior
work do not swap parameters1, but only swap activation
to the CPU [26, 40]. Without parameter swapping, prior
work cannot support DNNs whose parameters do not fit in
the GPU memory. Furthermore, designs based on manual
heuristics miss opportunities for performance improvements
as modern DNN dataflow graphs are too complex for analysis
by humans.

In this paper, we propose a general swapping mechanism
in which any tensor can be swapped in/out under mem-
ory pressure. More importantly, we aim to move away from
manual heuristics and to automatically optimize for the best
swapping plan given an arbitrarily complex dataflow graph.
We focus the discussion on swapping for a single GPU, but
our design can be used in a multi-GPU training setup which
replicates the model on different GPUs using data paral-
lelism.

3 Challenges and Our Approach
A good swapping plan should overlap communication and
computation as much as possible. The opportunities for over-
lapping come from swapping out a (temporarily) unused
tensor to make room for swapping in an out-of-memory
tensor before the latter is required for operator execution.
We aim to maximize such overlapping by carefully planning
for what and when to swap with the help of the dataflow
graph.

Prior work attempt to find a good swapping plan heuristi-
cally based on the dataflow graph structure alone [26, 40, 49].
However, this is not enough. In particular, we argue that
there are two critical factors affecting swap planning:

• Memory allocation. DNN computation uses a wide
range of tensor sizes, from a few KB to hundreds of MB.
To improve speed and reduce internal fragmentation,
frameworks such as MXNet use a memory pool which
pre-allocates a number of fixed-size tensor objects in
various size classes. As a result, swapping happens not
just when the GPU memory is full, but when there
is no free object in a particular size class. Therefore,
how to configure the memory pool for allocation can
critically affect swapping performance.

• Operator scheduling. Modern DNNs tend to have com-
plex dataflow graphs as the layers no longer form a
chain, but contain branches, joins and unrolled loops.
As a result, there are many different potential sched-
ules for executing operators. The order of execution

1The only exception being SuperNeuron [49] which swaps convolution but
not other types of parameters.
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Figure 1. Different schedule and memory allocation for a dataflow graph.

can profoundly affects the memory usage and thus the
performance of swapping.

Example. We use an example to show how memory allo-
cation and scheduling affect swapping. The example is based
on a portion of the dataflow graph of a toy neural network, as
illustrated in Figure 1(a). For simplicity, the dataflow graph
only shows the forward propagation and omits the back-
ward part. This branching structure is common in modern
CNNs [47, 60].

In Figure 1(a), blue rounded rectangles represent operators
and small yellow rectangles represent tensors. A tensor is
labelled as Ax (activation tensor) orWx (parameter tensor).
Suppose all tensors are 1MB, except forA2 andA5, which are
2MB (because A2,A5 are used to join two paths). Thus, the
memory consumption is 12MB2. Suppose the GPU’s memory
capacity is 10MB, and it takes one unit of time to execute an
operator or to transmit 1MB data between GPU and CPU.
A parameter tensor is initially in the CPU memory and

must be swapped into GPU memory before being used. We
can swap out a parameter tensor without copying it to CPU
memory as it is not changed during the forward pass. By
contrast, there is no need to swap in an activation tensor
(because it’s created by operators) but it must be copied to
CPU memory upon swap-out because it is needed in the
backward pass.
There are many ways to allocate memory and schedule

execution for Figure 1(a). We show 2 example schedules: left-
first executes operators on the left branch first, and right-first
executes the right branch first. We show 2 example mem-
ory allocations: coarse-grained allocates 5 memory objects
of 2MB each, and fine-grained allocates 8 memory objects of
1MB each and 1 object of 2MB. Together, there are 4 combina-
tions of schedule/allocation and we show the best swapping

2We do not consider memory reuse in the example as the partial dataflow
graph does not include the backward pass which forbids many reuse cases

plan under each combination, in Figures 1(b) to (e). As GPU-
CPU communication is duplex and concurrent with GPU
execution, each table’s top 3 rows give the timeline of ac-
tions for GPU computation, swap-in (from CPU to GPU),
and swap-out (from GPU to CPU) respectively. The last table
row shows the tensor objects that are currently resident in
the GPU memory.

Let’s contrast Figure 1(c) and (d) to see why memory allo-
cation affects swap planning. Both (c) and (d) have the same
right-first scheduling. However the total execution time of
(c) is one unit time longer than that of (d). Specifically, in
Figure 1(c), GPU sits idle in time slot t5 while operatorConv1
waits for its parameterW1 to be swapped in. It’s not possible
to swap inW1 earlier because the coarse-grained memory
pool of five 2MB objects is full at time t4. One cannot swap
out any of the 5 GPU-resident objects earlier: A3,W4 and A4
are input/output tensors needed by the currently running
operator Conv4, while A0 is needed as input for the next
operator Conv1. A2 is being swapped out but the communi-
cation takes two units of time due to its larger size. Figure 1
uses a fine-grained memory pool with eight 1MB objects and
one 2MB object. As a result, it can swap inW1 needed by
operator Conv1 one unit time earlier, at t4, because there is
still space in the memory pool.
We contrast Figure 1(d) and (e) to see why scheduling

affects swap planning. Both (d) and (e) use the same fine-
grained memory pool. However, Figure 1(e) takes one unit
of time longer than (d) because of its left-first schedule. In
Figure 1(e), GPU is idle for the time slot t6 as operatorConcat
waits for 2MB tensor A2 to complete swapping in order to
make room for its 2MB output A5. It is not possible to swap
out A2 any time earlier as it is the input of operator Conv3
which executes at time t4. By contrast, Figure 1(d)’s right-
first schedule is able to execute Conv3 earlier at t3, thereby
allowing A2 to be swapped out earlier.
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Our approach. Since memory allocation and operator
scheduling critically affect swapping performance, we de-
rive a swapping plan (aka which tensors to swap in/out and
when) assuming a given dataflow graph as well as a corre-
sponding memory allocation scheme and an operator sched-
ule (Sec 4). Specifically, the swap plan optimizes computation
and communication overlapping by swapping out tensors
not needed for the longest time in the future and prefetching
previously-swapped out tensor as early as possible.
We search the space of possible memory allocations and

operator schedules to find a combination with the best swap-
ping performance. Instead of using manual heuristics to con-
straint and guide the search, we adopt Genetic Algorithm
(GA for short) [5, 8, 18] to search for a good combination of
memory allocation and operator scheduling. GA has been
used for NP-hard combinatorial problems [28, 39] and sched-
uling in parallel systems [43]. We chose GA among other
search heuristics (e.g. simulated annealing) because it is fast:
GA can be parallelized and computed efficiently on multi-
core CPUs.

To enable effective exploration of a vast search space, we
must be able to quickly evaluate the overall performance
(i.e. end-to-end execution time) of a swap plan under any
combination of memory allocation/scheduling. We found it
too slow to perform the actual execution on real frameworks.
Therefore, we estimate the performance by running the swap
plan under a dataflow engine simulator. The simulator uses
measured computation time for each operator as well as GPU-
CPU communication bandwidth so that it can estimate the
execution time of a dataflow graph under a given scheduling,
memory allocation, and swap plan. The running time of our
simulator on a CPU core is orders of magnitude faster than
that of actual execution, reducing the search time for a model
to less an hour. The simulator enables SwapAdvisor’s GA to
directly optimize the end-to-end execution time.

4 SwapAdvisor Design
Overview. Figure 2 gives the architecture of SwapAdvi-

sor, which is integrated with an existing DNN framework
(MXNet in our implementation). Given a dataflow graph,
SwapAdvisor picks any legitimate schedule and memory
allocation based on the graph as initial values, and passes
them to the swap planner to determine what tensors to swap
in/out and when. The result of the swap planner is an aug-
mented dataflow graph which includes extra swap-in and
swap-out operators and additional control flow edges. The
additional edges are there to ensure the final execution order
adheres to the given schedule and the planner’s timing of
swaps.
For optimization, the augmented graph is passed to Swa-

pAdvisor’s dataflow simulator to estimate the overall exe-
cution time. SwapAdvisor’s GA-based search measures the
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Allocator

Swap

Planner
Simulator

Sample

Selector

SwapAdvisor
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MXNet

Figure 2. System overview of SwapAdvisor

performance of many memory allocation/schedule combi-
nations, and proposes new allocation/schedule candidates
for the swap planner. Once a swap plan has been sufficiently
optimized, the final augmented dataflow graph is given to
the framework for actual execution.

This section describes swap planner’s inputs (Sec 4.1) and
explain how the planner maximizes performance given a
specific schedule and memory allocation (Sec 4.2). A later
section (Sec 5) discusses GA-based optimization.

4.1 Operator schedule and memory allocation
In addition to the dataflow graph, the swap planner takes as
input an operator schedule and memory allocation.

Operator schedule. Given an acyclic dataflow graph G,
an operator schedule is any topological sort ordering of
nodes in G. When using a single GPU, the framework can
issue operators to the GPU according to the schedule to keep
the GPU busy. Indeed, frameworks such asMXNet commonly
perform topological sort to schedule operators.
NVIDIA’s recent GPUs support multiple “streams”. Swa-

pAdvisor uses 3 streams: one for performing GPU execution,
one for swapping out tensors to the CPU, and one for swap-
ping in tensors from the CPU. Since GPU-CPU communica-
tion is duplex, all three streams can proceed concurrently
when used in this manner. By contrast, if one is to use multi-
ple streams for computation, those streams cannot execute
simultaneously if there is not enough GPU compute resource
for parallel execution. We have observed no performance
benefits in using more than one stream for computation for
all the DNN models that we’ve tested. This observation is
also shared by others [40].

Memory allocation. We need to configure the memory
pool and specify memory allocation for a given dataflow
graph. The memory pool consists of a number of different
size-classes each of which is assigned a certain number of
fixed-size tensor objects. Given a dataflow graph G which
contains the sizes of all input/output tensors needed by each
operator, a memory allocation scheme can be defined by
specifying two things: 1) the mapping from each tensor size
in G to some size class supported by the memory pool. 2)
the set of supported size classes as well as the number of
tensor objects assigned to each class. As an example, the
coarse-grained allocation scheme in Figure 1(b)(c) has only
one size-class (2MB) with 5 objects, and maps each 1MB or
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2MB tensor to the 2MB size-class. The fine-grained scheme
in Figure 1(d)(e) has two size-classes (1MB and 2MB) with 8
and 1 objects respectively, and maps each 1MB tensor to the
1MB size-class and each 2MB tensor to the 2MB size-class.

4.2 Swap planning
The swap planner is given the dataflow graph as well as a
valid operator schedule and memory allocation scheme. Its
job is to find the swap plan with the best performance under
the given schedule/allocation combination. In particular the
swap planner decides: 1) which memory-resident tensors
to swap out under memory pressure, 2) when to perform
swap-in or swap-out.

Which tensors to swap out? At the high level, the swap
planner uses Belady’s strategy to pick the tensor that will
not be needed for the longest time in the future to swap out.
Seeing into the future is possible as the planner is given the
schedule. Belady’s strategy is optimal for cache replacement
and also works well in our context as it gives the planner
sufficient time to swap the tensor back before its next use.
Concretely, the planner scans each operator according to the
order in the schedule and keeps track of the set of input/out-
put tensor objects that become resident in memory as a result
of executing the sequence of operators. Upon encountering
memory pressure when adding a tensor of size s (i.e. there
is no free object in size-class of s), the planner chooses the
tensor from the same size-class as s to swap out. If there are
multiple candidates, the planner chooses one that will be
used in the furthest future.
There is a caveat when using Belady’s strategy in our

setting. Suppose tensor Ti–which is last used by operator
opi–is chosen to make room for tensor Tj , an input tensor
to the current operator opj . Thus, the earliest time Ti can be
swapped out is when opi finishes. If operators opi and opj are
too close in time in the schedule, there is little time to swap
in Tj before it’s needed by operator opj as its memory space
is not available until after Ti is swapped out. As a remedy,
when choosing a candidate tensor to swap out, the planner
picks among those who are most recently used at least a
threshold of time ago.
DNN training is iterative, but the swap planner is given

the dataflow graph for a single iteration only. At the end of
each iteration, all tensors other than the parameter tensors
can be discarded. However, to ensure that the same swap
plan can be used across many iterations, we must ensure that
the set of parameter tensors in the GPUmemory at the end of
an iteration is the same as in the beginning. To achieve this,
we perform a double-pass, i.e. scan the schedule to plan for
swapping twice. In the first pass, we assume no parameter
tensors are in the GPU memory, and must be swapped in
before their first usage. At the end of the first pass, a subset
of parameter tensors become residents in the memory, which
we refer to as the initial resident parameters. We then do

Compute:
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Op1
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W2

W3
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Figure 3. Example swap planning for a simple dataflow
graph. All tensors have unit size and total GPU memory
is 4 units.

a second pass assuming the initial resident parameters are
present in memory in the beginning of the schedule. In the
second pass, if there is additional memory pressure that did
not happen in the first pass, we remove a parameter tensor
from the set of initial residents to resolve the pressure. The
final swap plan’s initial GPU-resident parameters do not
include those removed in the second pass.

When to swap in and out? Our previously discussed se-
lection strategy has determined pairs of tensors to swap-out
and swap-in if necessary in order to execute each operator
according to the schedule. To maximize computation and
communication overlap, we want to complete a pair of swap-
out and swap-in as early as possible in order not to block
the execution of the corresponding operator in the schedule.
However, we must also ensure that the timing of swap-in/out
is safe.
We illustrate how the planner controls swap timing us-

ing an example 3-node dataflow graph (Figure 3(a)) and the
schedule op1,op2,op3 (Figure 3(b)). For simplicity, we assume
all tensors in the example are 1 unit in size and the total
GPU memory size is 4 units. In order to execute op1, we must
swap in the parameter tensorW1, thus the planner adds a
new dataflow node for swapping inW1 which is to be run on
the GPU stream dedicated for swap-ins. Similarly a swap-in
node forW2 is added. We note that there is sufficient memory
to hold the input/output tensors of both op1 and op2. How-
ever, in order to run op3, we need room to swap inW3 and
to allocate space for A3. The planner choosesW1 to make
room forW3 (referred to asW1 → W3) and choosesW2 to
make room for A3 (referred to asW2 → A3). Let’s consider
the case ofW1 →W3 first. The planner adds two dataflow
nodesW1(swap-out) andW3(swap-in). A control flow edge
fromW3(swap-in) to op3 is added to ensure that operator exe-
cution starts only afterW3 is in GPU memory. An edge from
W1(swap-out) toW3(swap-in) is added to ensure that swap-in
starts only when the memory becomes available upon the
completion of the corresponding swap-out. Additionally, an
edge from op1 toW1(swap-out) is included asW1 cannot be
removed from the memory until op1 has finished using it.
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The case ofW2 → A3 is similar, except that the planner does
not need to add a swap-in node forA3 because it is created by
the operator. The resulting augmented dataflow graph can
be passed to the framework’s dataflow engine for execution.

5 Optimization via Genetic Algorithm
5.1 Algorithm overview
Genetic algorithm (GA) aims to evolve and improve an en-
tire population of individuals via the nature-inspired mecha-
nisms such as crossover, mutation, and selection [5, 8, 18]. In
SwapAdvisor, an individual’s chromosome consists of two
parts: an operator schedule and a memory allocation. The
first generation of individuals are created randomly and the
size of the population is decided by a hyper-parameter, Np .
To create a new generation of individuals, we perform

crossover and mutation on the chromosomes of the current
generation. A crossover takes a pair of parent chromosomes
and produces new individuals by combining the features
from parents so that children can inherit “good” character-
istics (probabilistically) from the parents. In SwapAdvisor,
each crossover generates two new schedules and two mem-
ory allocation, thereby resulting in 4 children. We then per-
form mutation on the children which is essential for GA
to escape the local minimum and avoid premature conver-
gence [5, 8, 18]. The resulting mutated children are given
to the swap planner to generate the augmented dataflow
graph with swapping nodes. We use a custom-built dataflow
simulator to execute the augmented graph and obtain the
execution time, which is used to measure the quality of an
individual. Finally, the GA selects Np individuals among the
current population to survive to the next generation.

Selection methodology. How to select individuals to sur-
vive is crucial in GA. If we choose only the best individuals
to survive, the population can lose diversity and converges
prematurely.

SwapAdvisor’s selection takes into account the quality of
an individual to determine the probability of its survival. Sup-
pose an individual’s execution time is t , we define its normal-
ized execution time as tnorm = (TBest −t)/TBest , whereTBest
is the best time among all individuals seen so far. The sur-
vival probability of an individual is decided by the so f tmax
function.

Probi =
etnormi∑S
j=1 e

tnormj
for i = 1 . . . S (1)

In the equation, S is the population size before selection
(usually larger than Np ). We use the softmax-based selection
because our experiments show that it reaches more stable
results compared to the popular tournament selection [5, 8,
18].

1 2 345

12 3 4 5 1 2 5

2 3 4

3 4

1 5
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Figure 4. Cross over SCH1 and SCH2. There are five nodes
in the dataflow graph.

5.2 Creating new schedules
Encoding. As a schedule is a topological ordering of the

dataflow graph (G), it is natural to encode a schedule as a
list, SCH , where each element in SCH is a node id in G.

Crossover. We borrow the idea from [43] to create two
child schedules. by crossing over two parent schedules, SCH1
and SCH2. We explain via an example, shown in Figure 4.
First, a crossover point, CR, is chosen randomly. In the ex-
ample, CR = 3. To create child SCHC1, the crossover takes a
slice of SCH2 (SCH2[1 . . .CR] = [2, 3, 4]) to be the first part
of SCHC1. The nodes not in the SCHC1 are filled in according
to their order in SCH1. In the example, nodes 1 and 5 are not
in SCHC1 = [2, 3, 4], thus we fill them in the remaining slots
of SCH1, in that order. SCHC2 can be created via the same
approach but with different parts from SCH1 and SCH2, as
shown in the bottom of Figure 4. The algorithm guarantees
SCHC1 and SCHC2 are the topological ordering of G [43].

Mutation. A simpleway tomutate a schedule is to change
a node’s position in the list randomly as long as the result
remains a topological ordering [43]. However, we have em-
pirically observed that GA works better if we mutate multi-
ple nodes in one mutation (e.g., more than 2x performance
improvement for RNNs).
SwapAdvisor’s mutation algorithm mimics a dataflow

scheduler. It maintains a ready set, containing all the nodes
which are ready to run (all the predecessor nodes are ex-
ecuted). The core function of the mutation algorithm is to
choose a node from the ready set based on following two con-
ditions. First, with a probability P, a mutation happens. In
such a case, the algorithm randomly chooses a node from the
ready set. Otherwise, the algorithm selects the node from the
ready set which is executed earliest in the original schedule
(not mutated). A chosen node is viewed as “executed”. The
algorithm terminates when all the nodes are “executed”. The
mutation algorithm generates a new schedule which mostly
follows the input schedule but with some nodes scheduled
differently.
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Figure 5. Cross over (CLS1,CNT1) and (CLS2,CNT2). There
is 12MB memory and there are four different sizes of tensors,
1MB, 2MB, 3MB, and 4MB.

5.3 Creating new memory allocation
Encoding. The memory allocation controls how to map

each size to a size class and how many objects to assign to
each size class. Although it’s natural to use a hash map to
map tensor sizes to size classes, doing so loses the relative
size information between different tensor sizes, making it
more difficult to do efficient crossover. We use two lists,CLS
and CNT , to represent the tensor size-class mapping.
Let TS be the sorted list of unique tensor sizes observed

in the dataflow graph. CLS is a list with the same length as
TS , and the ith item inCLS (CLS[i]) is a positive integer rep-
resenting the size-class for tensors with sizeTS[i]. Thus, the
number of the size-classes isMax(CLS). CNT is a list repre-
senting the number of tensor objects allocated for each size-
class. Consequently, the length of CNT isMax(CLS). As an
example, the dataflow graph of Figure 1 has only two differ-
ent tensor sizes, thus TS = [1MB, 2MB]. The coarse-grained
allocation with five 2MB objects corresponds toCLS = [0, 0],
indicating that both 1MB and 2MB sizes are mapped to the
same size-class with id 1 and object size is 2MB. CNT = [5]
contains the number of objects assigned to each size class
from id = 0...Max(CLS).

The number of potentialCLS lists isO(N N )whereN is the
number of unique tensor sizes [52]. Such a gigantic search
space can seriously cripple the performance of GA.We prune
the search space by imposing the restriction that CLS must
be a monotonically increasing sequence and each CLS[i] is
equal to or one greater than CLS[i − 1]. The intuition is that
the allocation is more efficient when consecutive sizes are
mapped to the same or adjacent size classes. This restriction
cuts down the search space from O(N N ) to O(2N ).

Crossover. We first explain how to cross over two CLS
using an example, shown in Figure 5. There are two CLS
before crossover (CLS1 and CLS2) and four different tensor
sizes: 1MB, 2MB, 3MB and 4MB. CLS1 = [1, 1, 1, 1] means
that all four tensor sizes belong to the same size-class, 4MB,

and CNT1 = [4] indicates that there are four 4MB tensor
objects allocated. CLS2 = [1, 2, 2, 2] means that there are
two size-classes, 1MB and 4MB. There are eight 1MB tensor
objects and one 4MB tensor object as CNT2 is [8, 1].

The crossover randomly picks a crossover point,CR to par-
tition the parent lists,CLS1 andCLS2. The first child size-class
mapping CLSC1 is made by concatenating CLS2[1 . . .CR]
and CLS1[CR + 1 . . .N ]. The second child size-classes map-
ping CLSC2 is made by concatenating CLS1[1 . . .CR] and
CLS2[CR + 1 . . .N ]. Figure 5(a) shows the crossover forCLS .
In the figure, CR is 2 and the results, are CLSC1 ([1, 2, 1, 1])
andCLSC2 ([1, 1, 2, 2]). Note thatCLSC1 is not monotonically
increasing. Thus, we repair it to ensure the new size-class
mapping is still valid. Our repair increases the elements in a
problematicCLS by the minimal amount so that the resulting
sequence becomes valid. In Figure 5(a), we would increase
the 3rd and 4th elements of CLSC1 by 1, so that the repaired
CLSC1 becomes [1, 2, 2, 2].

The same crossover scheme cannot be directly used for
CNT as its length depends on the content of the corre-
sponding CLS . As a result, we extend a CNT to an extended
CNTEXT which has the same length as CLS (and TS). CNT
captures how many tensor objects are allocated for each size-
class, whileCNTEXT indicates how many tensor objects can
be used for each tensor size. For example, in Figure 5, CLS2
is [1, 2, 2, 2] which means 1MB belongs 1MB size-class and
2MB, 3MB, and 4MB belong to 4MB size-class.CNT2 is [8, 1]
and CNTEXT2 can then be viewed as [8, 1, 1, 1]. CNTEXT1 is
[4, 4, 4, 4]. We apply the same technique to cross over the ex-
tendedCNT . Figure 5(b) shows the resulting extendedCNT s
for child1 and child2. For example, CNTEXTC1 is [8, 1, 4, 4]
and the last three element belong to the same size-class (ac-
cording to CLSC1). We average all the elements in the same
size class to get the count for that size-class. Thus the result-
ing CNTC1 is [8, 3].
Similar to CLS , a new CNT may need to be repaired. For

example, CNTC1 is invalid, as the memory consumption is
20MB (8 ∗ 1 + 3 ∗ 4), exceeding the 12MB memory capac-
ity. We repair a CNT by decreasing each element inverse-
proportionally to the element’s corresponding size-class. For
example, the originalCNTC1 is [8, 3] and the repairedCNTC1
is [4, 2], as the first size-class is 1MB and the second size-class
is 4MB.

Mutation. Similar to the scheduling mutation, we mutate
more than one element in CLS (and CNT ). An element is
mutated with the probability of P

To mutate the ith element inCLS , we can either increase it
by 1 or decrease it by 1. IfCLS[i] equals toCLS[i −1], we can
increase CLS[i] by 1 as decreasing it breaks the monotonic
increasing feature. If CLS[i] equals to CLS[i − 1] + 1, we
decreaseCLS[i] by 1. Note that, all the elements after the ith
element also need to be increased or decreased to maintain
the monotonic increasing feature.
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To mutate an element in CNT , we use a Gaussian distri-
bution with the original value as the mean. With Gaussian
distribution, the mutated value is close to the original value
most of the time but can have a large variation with a small
chance. The mutated CNT and CLS can exceed the memory
limit. We use the same methodology as crossover to repair
them.

6 Evaluation
In this section, we evaluate the performance of SwapAdvisor.
The followings are the highlights of our results:

• SwapAdvisor can achieve 53% - 99% of the training
throughput of the ideal baseline with infinite GPU
memory when training various large DNNs. SwapAd-
visor outperforms the online swapping baseline up to
80× for RNNs and 2.5× for CNNs.

• When being used for model inference, SwapAdvisor
reduces the serving latency up to 4× compared to the
baseline which time-shares the GPU memory.

• SwapAdvisor’s joint optimization improves the train-
ing throughput with swapping from 20% to 1100% com-
pared to only searching memory allocation or only
searching scheduling.

6.1 Experimental setup
Prototype implementation. SwapAdvisor is based on

MXNet 1.2. The GA and simulator are written in Python
(4.5K LoC). We implement a parallel GA – each process per-
forms crossover, mutation, and simulation on a part of the
samples on a CPU core.
For MXNet, we modify the scheduler to ensure swap-in

and swap-out operations are run on two separated GPU
streams other than the computation stream. We also imple-
mented a new memory allocator which follow the result
from SwapAdvisor. The modification of MXNet is 1.5K LoC.

Testbeds. We run SwapAdvisor on an EC2 c5d.18xlarge
instance with 72 virtual CPU cores and 144GB memory. The
results of SwapAdvisor are executed on an EC2 p3.2xlarge
GPU instance, which has one NVIDIA V100 GPU with 16GB
GPU memory and 8 virtual CPU cores with 61GB CPU mem-
ory. The PCIe bandwidth between the CPU and GPU is
12GB/s unidirectional and 20GB/s bidirectional. For experi-
ments with more than 61GB memory consumption, we use
a p3.8xlarge instance with 244 GB CPU memory but utilize
only a GPU.

Genetic algorithm parameters. All parameters of the
GA are determined empirically using grid-search. The sam-
ple size is set to 144 to allow evenly distributing search tasks
to the 72 CPU cores. The effectiveness of the mutation prob-
ability varies with different models. However, 10% is a good
start search point for our evaluation. We set the search time
for the GA to be 30 minutes.

Evaluated DNN models. ResNet [16] is one of the most
popular CNNs. A ResNet contains several residual blocks; a
residual block has several convolution operators. The activa-
tion of a residual block is combined with activation from the
previous block to form the final output. We use ResNet-152,
a 152 layers ResNet, for the inference experiments. Wide
ResNet [58] is a widened version of ResNet. The channel size
of convolution operators are multiplied by a wide scale. Due
to the large memory consumption, the original work applies
wide ResNet on small images (32x32) dataset CIFAR-10 in-
stead of ImageNet (224x224) which is used by ResNet. In our
training experiments, the input images are the same size as
ImageNet. We denote a wide ResNet model as WResNet-152-
X , a 152-layers wide ResNet with X wide scale.

Inception-V4 [47] is another popular CNN model. An
Inception-V4 model contains several types of inception cells;
an inception cell has many branches of convolution and the
activation tensors of all the branches are concatenated to
form the final output. We enlarge the model by adding a
wide scale parameter similar to WResNet. We use the nota-
tion Inception-X to denote an Inception-V4 model with wide
scale X .

Unlike manually designed ResNet and Inception-V4, Nas-
Net [60] is crafted by a deep reinforcement learning search.
Thus, the model structure of NasNet is more irregular. A Nas-
Net model consists of a chain of Reduction and Normal cells,
with residual connection (same as ResNet) between consec-
utive cells. A Reduction or Normal cell is like an inception
cell but with different branch structures. The Normal cells
are repeated by 3R times. In the original design, the max R
is 7. In our experiments, we train NasNet-25, a NasNet with
R = 25.

RNN [17] is a DNN for training sequence input (e.g., text).
A layer of RNN consists of a list LSTM cells where the input
of a cell is the corresponding element in the sequence (e.g.,
character). Bidirectional-RNN (BRNN) [41] is a variation of
RNN. A hidden layer in BRNN contains two sub-layers. The
input for the first sub-layer is the original sequence, and the
input for the second sub-layer is the reversed sequence. The
activation tensors of the two layers are concatenated to form
the final activation. Each sub-layer has its own parameters.
We use the notations RNN-L-XK (BRNN-L-XK) to denote a
RNN with L layers and the parameter size of a layer is XK.

Baselines. We compare SwapAdvisor with two baselines.
The first one is the ideal baseline, denoted as ideal. For the
ideal baseline, we assume the GPU memory is infinite. We
implement the ideal baseline by directly reusing the GPU
memory (and thus compromising computation correctness).
The ideal baseline gives the strict upper-bound performance
achievable by a swapping system.
The second baseline is an online on-demand swapping

system, denoted as ODSwap, which incorporates heuristics
including LRU-based swapping and prefetching used by
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Figure 6. Normalized throughput relative to the ideal performance. Each group of bar represents one batch size. The number
on each bar shows the absolute throughput in samples/sec. X axis shows the different batch sizes.

vDNN [40] and SuperNeuron [49]. Specifically, in the first
training iteration, ODSwap swaps out a tensor when the
GPU memory is insufficient to run the next node based on
LRU. In subsequent iterations, ODSwap performs prefetching
based on the scheduling decisions seen in the first iteration
to best overlap communication and computation. Our re-
ported performance numbers for ODSwap ignore the first
iteration.

6.2 Wider and deeper DNN model training
Table 1 shows the statistics of the models evaluated in this
section. Each row shows the memory usage, number of op-
erators, and number of different tensor sizes. The batch size
for a model is the largest one in Figure 6.

RNN performance. Figure 6a and 6b show the through-
put for RNN-8-8K and BRNN-4-8K. SwapAdvisor achieves
70-80% of the ideal performance for RNN and BRNN, while
the throughput of ODSwap is only less than 1% of ideal. For
RNN and BRNN, the parameter tensors are shared by the
LSTM cells in the same layer. Thus, a schedule which ex-
ecutes LSTM cells from different layers results in terrible
swapping performance as the system has to prepare memory
for different large parameters. Unfortunately, randomly gen-
erating a topological ordering almost always results in such
a schedule, as is MXNet’s default schedule. Thus ODSwap
has poor performance. SwapAdvisor is able to find a swap-
friendly schedule through GA.

CNN performance. Figure 6c, 6d, and 6e demonstrate the
throughput for WResNet-152-10, Inception-4, and NasNet-
25. Table 1 shows that WResNet-152-10 uses astonishingly
180GBmemory, but both SwapAdvisor and ODSwap perform
well; SwapAdvisor achieves 95% of the ideal performance,
and ODSwap achieves 80% of ideal. WResNet-152-10 has
only 26 different tensor sizes, making it less difficult to do the

Model MemUsage OPs TensorSizes
WResNet-152-10 180GB 882 26

Inception-4 71GB 830 64
NasNet-25 193GB 5533 65
RNN-8-8K 118GB 8594 7
BRNN-4-8K 99GB 9034 9

Table 1. Statistics of DNN models. The batch size for CNN
models is 64, is 256 for RNN, and is 128 for BRNN.

memory allocation. More importantly, unlike RNN/BRNN,
the topology of the dataflow graph of WResNet more resem-
bles to a line – only a jump link for a residual block. Thus,
the scheduling choice may affect little to the final results.

On the other hand, Inception-4 and NasNet-25 have more
than 60 different tensor sizes, making it harder to do mem-
ory management. The topology of the dataflow graph for
Inception-V4 and NasNet is also more complicated as dis-
cussed in Sec 6.1. SwapAdvisor achieves 20% - 150% perfor-
mance improvement compared to ODSwap.
Note that, for Inception-4 and NasNet-25, SwapAdvisor

can achieve 80% performance of the ideal baseline, when the
batch size is 16. However, SwapAdvisor cannot achieve more
than 65% of the ideal performance when the batch size is 64.
Both Inception-4 and NasNet-25 have many large activation
tensors (>500MB) when the batch size is 64. Together with
large number of tensor sizes (> 60), it can be difficult for
SwapAdvisor to search a good pool configuration to min-
imize swapping overhead. NasNet-25 also has more than
9000 nodes in the graph, making it hard to schedule. As a
result, SwapAdvisor achieves only 53% of the ideal baseline
for NasNet-25 with batch size 64.

Comparing with TFLMS.. We also compare SwapAdvi-
sor and ODSwap with TFLMS [26], an swapping extension to
TensorFlow. Unfortunately, TFLMS cannot support models
in Figure 6. We evaluate WResNet-152-4 as this is the largest
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Figure 7. WResNet-152-4 throughput comparison
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Figure 8. 99 percentile latency versus throughput for serving
multiple ResNet-152 models.

executable one for TFLMS. Figure 7 shows that for all three
batch sizes, SwapAdvisor is at least 3X better than TFLMS,
while ODSwap is at least 2X better than TFLMS. TFLMS
performs poorly due to not swapping out parameter tensors
(which are large in WResNet-152-4). The design reduces the
GPU memory capacity to store activation tensors and causes
more swapping of activation tensors.

6.3 DNN models inference evaluation

MemSize/Batch 1 16 64
64MB 0.024s N/A N/A
128MB 0.022s 0.077s N/A
192MB 0.018s 0.044s N/A
512MB 0.017s 0.040s 0.238s
640MB 0.017s 0.040s 0.123s

Table 2. ResNet-152 inference time with different batch sizes
and GPU memory sizes.

Model inference (serving) uses far less GPU memory than
training a model as there is no back-propagation. However,
SwapAdvisor is still useful for serving in several cases.

Table 2 shows how SwapAdvisor can reduce the memory
requirement for ResNet-152 with different batch sizes. In the
table, each cell is the running time of one inference iteration
with the corresponding available GPU memory size. "N/A"
means SwapAdvisor cannot run the inference job with such
a small memory capacity. The running time with a bold font
means swapping is required to run the job (memory is not
enough). The running time with an italic font means that
the running time is close to the performance using full 16GB
memory capacity (< 1% performance difference).

An interesting experiment is when the batch size is 1.
Batch size 1 is rarely used for training or inference on a
cluster, but it is not uncommon to be used for inference
on a mobile device. Table 2 demonstrates SwapAdvisor can
reduce the memory usage for batch size 1 to as few as 64MB
with 40% running time overhead or to 192MB with only
6% overhead. SwapAdvisor can help to fit a DNN model to
a resource-limited GPU. Though the communication speed
between GPU and CPU on amobile device is slower than that
on an EC2 GPU instance, V100 GPU is also much faster than
a mobile GPU. Consequently, the actual swapping overhead
on a mobile device can be different from what Table 2 shows.
Nevertheless, the result still poses a potential use case for
SwapAdvisor.
Another possible serving use case for SwapAdvisor is to

time-share the GPU resource among different DNN infer-
ences. In the setting, a GPU machine time-shares the com-
putation and memory among models. What if we only time-
share GPU computation but partition the GPU memory and
distribute the GPU memory to the models? Since the split
GPU memory capacity may be too small for a DNN model,
we apply SwapAdvisor so that all the models can fit on the
partitioned memory.
We consider time-sharing GPU memory as the baseline

and compare the latency of clients. In the evaluation, there
are multiple ResNet-152 on the GPU, each has its own trained
parameters. We assume that the client arrival rate follows a
Poisson distribution and randomly assign batches of clients
to different models. Figure 8 shows the 99 percentile latency
versus the throughput of the GPU machine. The number
after a legend denotes how many models are run on the GPU.
The figure also shows the latency for serving only one model
on the GPU, denoted as “not_shared”.

We can see that the 99 percentile latency of SwapAdvisor
is at most 2× slower than “not_shared” when the throughput
is less than 400 for both 4 and 16 models. On the other hand,
the latency of “time_shared” is 8x slower than “not_shared”
with 16 models when the throughput is 300. It may not be a
wise decision to serve several ResNet-152 on a GPUwhen the
throughput is larger 400 as the latency dramatically increases
for both SwapAdvisor and “time_shared”.
The main benefit of SwapAdvisor is that it overlaps the

memory copy with the computation. On the other hand,
the baseline has to swap in the parameter tensors for the
next model after the current model execution. It is possible
for “time_shared” to prefetch the parameters for the next
model if the system can predict which model to execute next.
With such a task scheduler, the baseline may outperforms
SwapAdvisor. However, SwapAdvisor can still be used to
mitigate the potential overhead when the task scheduler
predicts incorrectly.
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6.4 The effectiveness of SwapAdvisor’s design

choices
The effectiveness of scheduling and memory alloca-

tion. We would like to see the importance to optimize both
scheduling and memory allocation. Figure 9 shows that it is
very important for a RNN model to search a swap-friendly
schedule. Without searching a good schedule, SwapAdvisor
can only achieve 7% of the performance with the full search.
On the other hand, Figure 10 shows that the memory alloca-
tion affects the performance of Inception-V4 more than the
scheduling. Without searching schedules, SwapAdvisor can
still achieve 93% performance of the full search. Figure 10
demonstrates that it is important to optimize both schedul-
ing and memory allocation for swapping as the effectiveness
of the two components vary from model to model.

The performance of the genetic algorithm. Figure 9
shows the search performance of the GA. In the figures,
there are three lines, representing the best, average, and
worst simulated time of all the alive samples (144 samples)
at the moment. The first generation of sample is randomly
generated. The GA can generally find a good solution within
100 seconds, as both the average and the best simulated time
converge quickly within the first 100 seconds. However, the
difference between the worst (or the average) result and the
best result shows that the population still maintains the di-
versity, allowing the GA to gradually optimizes the sample
in the remaining time.

Both Figure 9b and Figure 9c show the search for Inception-
4, but Figure 9c assumes that if the tensor size mapping is
unrestricted. We can see that all of the best, average, and
worst result in Figure 9c are worse than Figure 9b, proving
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Figure 11. Simulated execution time versus actual execution
time for the simulation results of two different models with
batch sizes, 32 and 64.

that the restricted search space helps SwapAdvisor to find
better results. The effectiveness of the restricted search space
is universal to all the evaluated models.

6.5 Simulator accuracy
Figure 11 shows 20 randomly selected simulation results and
their corresponding actual execution time. There are two
models, Inception-4 and WResNet-152-10, with two different
batch sizes, 32 and 64. Thus, there are totally 4 different
experiments, and each has 5 data points. The two dashed
lines depict the bounds of simulation inaccuracy. The upper
dashed line means the actual execution is 4% slower than the
simulation, and the lower one means the actual execution is
12% faster than the simulator. For example, all the data points
WResNet-152-10 with batch size 32 (WResNet-152-10/b32)
are closer to the upper dashed line. Thus the simulation
of WResNet-152-10/b32 is around 4% faster than the actual
execution.

Among the 20 data points in Figure 11, 19 data points main-
tain the same relative performance according to simulation
and actual execution. The only exception is the rightmost
data point (belonging to WResNet-152-10/b64). Whenever
two data points have different relative performance accord-
ing to simulation and actual execution, their actual execution
time difference is less than 10% when evaluated on a larger
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set of data points than shown in Figure 11 (In Figure 11, the
max difference is 2%, corresponding to the two rightmost
data points). These results indicate that using simulated per-
formance is an effective way to accelerate GA-based search.

7 Related Work
Swapping for DNN. Existing swapping systems rely on

manual insights to determine what to swap. vDNN [40]
swaps out all activation tensors or swap all convolution
tensors only. TFLMS [26] also only swaps activation. [30]
uses the length of the critical path for an activation tensor
and its loss-function node as the heuristic to decide what
activation tensors to swap out. [57] is an on-demand swap-
ping mechanism for TensorFlow. Its heuristic is to swap out
tensors from the previous iterations to the host memory, a
strategy that only works for RNNs.

None of the work above swaps parameters, hence cannot
support a large model. SuperNeurons [49] adopts a differ-
ent approach; it combines swapping with recomputation.
However, SuperNeurons restricts the swapping to convo-
lution operators. The decision forbids SuperNeurons from
supporting an RNN model with large parameters. By con-
trast, SwapAdvisor can support various kinds of deeper and
wider DNN models.

Alternative approaches to GPU memory limit. There
exist approaches that do not rely on swapping to reduce
memory consumption. The first direction includes comput-
ing with lower-precision floating-point numbers [12, 24],
quantization, and parameters compression [3, 9, 13–15, 20].
[33] observes the similarities among the activation tensors
for CNN inferences and proposes to reuse the activation
tensors to speedup the performance and to reduce mem-
ory consumption. These techniques either affect the model
accuracy or require heavily hyper-parameter tuning while
swapping does affect the results.
Another approach is recomputation. Recomputation uti-

lizes the fact that an activation tensor can be recomputed. As
a result, [2, 11, 29] deallocate activation tensors after their
last usage in the forward-propagation and later recompute
the activation tensors when they are needed. Although re-
computation can be used for deeper models and large input
data, it fails to support wider models where large parameter
tensors occupy the memory and cannot be recomputed.
Finally, training DNN models with multiple GPUs is an

active research. The most popular way to parallelize a DNN
model is data parallelism [4, 27, 51]. With data parallelism,
each GPU gets a portion of the input data and full param-
eters of the model. Thus, the input tensor and activation
tensors are sliced and distributed to GPUs, effectively re-
ducing the memory consumption of each GPU. While easy
to use, data parallelism duplicates the full parameters on
each GPU, limiting the largest parameter size the model can

have. Contrary to data parallelism, model parallelism parti-
tions both activation tensors and parameter tensors [6, 25].
However, applying model parallelism for a model requires
significant engineering work. [22, 23, 50] propose to auto-
mate the model parallelism and reduce the communication
with dataflow graph analysis.

Scheduling to reduce memory utilization. Some work
have considered the trade-off between the throughput of a
task graph schedule and its resource consumption [44, 45, 53].
These work target scenarios where the buffer (memory) is ex-
pensive, and the application has a throughput constraint (e.g.
video frame rates). Consequently, the optimization goal is
not to maximize the throughput but to minimize the memory
consumption subject to a throughput constraint. SwapAd-
visor, on the other hand, aims to minimize execution time
(maximize throughput) with unconstrained CPU-memory
and constrained GPU-memory consumption. The key design
factor for SwapAdvisor is communication and computation
overlapping, which is not considered in the related work.

Overlapping GPU communication and computation.
There are existing work to overlap communication and com-
putation [1, 59] for other types of computation not related to
DNNs. They adopt two patterns: 1) divide a coarse-grained
kernel to fine-grained sub-kernels so some sub-kernels can
start computation while others wait for communication, 2)
use queues to communicate fine-grained computation results
between producers/consumers who process fine-grained
tasks. Kernel subdivision or the queue-based approach en-
able overlapping within a single coarse-grained kernel or
a producer/consumer pair. However, our past experience
has shown non-trivial performance overhead when dividing
coarse-grained DNN kernels into fine-grained sub-kernels.
Thus, SwapAdvisor relies on pre-fetching to enable over-
lapping within a dataflow graph of many coarse-grained
kernels.

Multiple DNN inferences on aGPU. TensorRT [34] lever-
ages GPU streams to run multiple model inferences con-
currently. NVIDIA MPS [35] also supports concurrent GPU
tasks, but the tasks are not limited to DNN inference. Both
TensorRT and MPS requires users to partition the GPU mem-
ory for tasks. SwapAdvisor can help both systems to allevi-
ate the memory pressure. Salus [56] aims to support fine-
grained GPU sharing among DNN tasks. Salus allocates a
shared memory space to store activation tensors and scratch
space for all the models as these memory consumption can
be dropped directly after the last usage in an iteration. It
assumes parameter tensors are in the GPU memory, and
thus can borrow SwapAdvisor’s technique to support even
more(and larger) models on a GPU.
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Genetic algorithm for computer systems. Genetic al-
gorithm has been used to schedule tasks on parallel or dis-
tributed systems [19, 42, 43, 46, 48, 54]. SwapAdvisor bor-
rows several ideas from the existing work, e.g., how to cross
over schedules. However, the setting of SwapAdvisor is dif-
ferent. The existing work is designed for a multi-cores or
multi-machines system where a task can be scheduled on
a different core or machine. On the other hand, all of the
computation tasks in SwapAdvisor are executed on the same
GPU. Consequently, only the execution order matters for
SwapAdvisor, resulting in a different crossover and mutation.

Some work use genetic algorithm to allocate data objects
in a heterogeneousmemory system (e.g. SRAMvs. DRAM) [7,
38]. Thememory allocation of SwapAdvisor also decides how
many memory pools before allocating memory objects for a
pool.

8 Discussion, limitations, and future work
Dynamic dataflow graph. The design of SwapAdvisor re-
quires a static dataflow graph. To work with PyTorch or
TensorFlow’s imperative execution mode, one could extract
a dataflow graph using techniques described in [21]. How-
ever, SwapAdvisor currently cannot handle any control-flow
primitives [57] in the dataflow graph, which are needed to
support a wider range of DNNs.
One potential solution is to adopt a hybrid swapping de-

sign. We can view a dynamic dataflow graph as consisting of
three types of sub-graphs: The first one is a static sub-graph,
which corresponds to the static part of the computation and
is always executed. The second one is a repetitive sub-graph
(e.g., containing a “while” loop), which can executed more
than once. And the final one is a sub-graph with conditional
nodes (e.g., containing “if/else”). SwapAdvisor can be directly
applied to static sub-graphs, as well as repetitive sub-graphs
using the same technique for handling multiple training iter-
ations (Sec 4.2). For sub-graphs with conditional nodes, we
can instead use an online on-demand swapping strategy (e.g.,
ODSwap). There remain open challenges (e.g., how to prop-
erly switch from SwapAdvisor to ODSwap) for the hybrid
design, which require further investigation.

Multi-GPU support. SwapAdvisor currently swaps for
a single-GPU, and it’s desirable to extend it to work with
multiple GPUs. There are two popular methods for multi-
GPU training, data parallelism and model parallelism. With
data parallelism, each GPU runs the same dataflow graph
using a different sub-batch of training data. In this case, we
can run SwapAdvisor for one GPU while taking into account
that the available GPU-CPU bandwidth is 1/n with n-GPUs.
Unfortunately, no straightforward adaptation of SwapAd-
visor exists for model parallelism. This is because, unlike
data parallelism, model parallelism incurs inter-GPU commu-
nication during both forward/backward propagation. Since
SwapAdvisor does not consider communication across GPUs,

the resulting swapping strategy is unlikely to be optimal. It
remains an open research problem how to generalize Swa-
pAdvisor for multi-GPU training under model parallelism.

Alternative search methods. We chose GA because we
find that it works well empirically and is much faster than
some alternatives (e.g. simulated annealing). However, we
have yet to explore certain other promising search methods
such as reinforcement learning [31, 32]. The use of GA also
forces us to simplify certain design choices, e.g. we adopt
a memory-pool based allocation because it is difficult to
incorporate a dynamic allocator in GA’s search. Whether it
is beneficial to remove these limitations using better search
methods requires further research.

9 Conclusion
We present SwapAdvisor to enable training and serving
DNN models with limited GPU memory size. SwapAdvisor
achieves the good performances via optimizing three dimen-
sions, scheduling, memory allocation, and swap planning.
To simultaneously optimize scheduling and memory alloca-
tion, SwapAdvisor adopts the genetic algorithm to search
for a good combination. For a given schedule and memory
allocation, SwapAdvisor’s swap planner is able to determine
what and when tensors to swap to maximize the overlap
computation and communication.
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