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ABSTRACTAdvanes in proessor, memory and radio tehnology willenable small and heap nodes apable of sensing, ommuni-ation and omputation. Networks of suh nodes an oor-dinate to perform distributed sensing of environmental phe-nomena. In this paper, we explore the direted di�usionparadigm for suh oordination. Direted di�usion is data-entri in that all ommuniation is for named data. Allnodes in a direted di�usion-based network are appliation-aware. This enables di�usion to ahieve energy savings byseleting empirially good paths and by ahing and pro-essing data in-network. We explore and evaluate the useof direted di�usion for a simple remote-surveillane sensornetwork.
1. INTRODUCTIONIn the near future, advanes in proessor, memory and ra-dio tehnology will enable small and heap nodes apable ofwireless ommuniation and signi�ant omputation. Theaddition of sensing apability to suh devies will make dis-tributed mirosensing|an ativity in whih a olletion ofnodes oordinate to ahieve a larger sensing task|possible.Suh tehnology an revolutionize information gathering andproessing in many situations. Large sale, dynamiallyhanging, and robust sensor networks an be deployed in in-hospitable physial environments suh as remote geographiregions or toxi urban loations. They will also enable lowmaintenane sensing in more benign, but less aessible, en-vironments: large industrial plants, airraft interiors et.To motivate our researh, onsider this simpli�ed model ofhow suh a sensor network will work (we re�ne this model in�This work was supported by the Defense Advaned Re-searh Projets Ageny under grant DABT63-99-1-0011.Any opinions, �ndings, and onlusions or reommendationsexpressed in this material are those of the authors and donot neessarily reet the views of the Defense AdvanedResearh Projets Ageny.

Setion 2). One or more human operators pose, to any nodein the network, questions of the form: \How many pedestri-ans do you observe in the geographial region X?", or \Tellme in what diretion that vehile in region Y is moving".These queries result in sensors within the spei�ed region be-ing tasked to start olleting information (Setion 2). Oneindividual nodes detet pedestrians or vehile movements,they might ollaborate with neighboring nodes to disam-biguate pedestrian loation or vehile movement diretion.One of these nodes might then report the result bak to thehuman operator.Motivated by robustness, saling, and energy eÆieny re-quirements, this paper examines a new data disseminationparadigm for suh sensor networks. This paradigm, whihwe all direted di�usion1, is data-entri. Data generatedby sensor nodes is named by attribute-value pairs. A noderequests data by sending interests for named data. Datamathing the interest is then \drawn" down towards thatnode. Intermediate nodes an ahe, or transform data, andmay diret interests based on previously ahed data (Se-tion 3).Using this ommuniation paradigm, our example mightbe implemented as follows. The human operator's querywould be transformed into an interest that is di�used to-wards nodes in regions X or Y. When a node in that regionreeives an interest, it ativates its sensors whih begin ol-leting information about pedestrians. When the sensorsreport the presene of pedestrians, this information returnsalong the reverse path of interest propagation. Intermediatenodes might aggregate the data, e.g., more aurately pin-point the pedestrian's loation by ombining reports fromseveral sensors. An important feature of direted di�usionis that interest and data propagation and aggregation aredetermined by loalized interations (message exhanges be-tween neighbors or nodes within some viinity).Direted di�usion is signi�antly di�erent from IP-style om-muniation where nodes are identi�ed by their end-points,and inter-node ommuniation is layered on an end-to-enddelivery servie provided within the network. In this paper,we desribe direted di�usion and illustrate one instantia-tion of this paradigm for sensor query dissemination andproessing. We show that using direted di�usion one an1Van Jaobson suggested some of the initial ideas that later led to the design ofdireted diffusion.



realize robust multi-path delivery, empirially adapt to asmall subset of network paths, and ahieve signi�ant en-ergy savings when intermediate nodes aggregate responsesto queries (Setion 4).
2. DISTRIBUTED SENSOR NETWORKSBefore we desribe direted di�usion, we must desribe theexpeted arhitetures of sensor networks. To do this, we�rst desribe the expeted apabilities of sensor nodes. Itis not unreasonable to expet the following features in a fu-ture sensor node: A mathbox sized form fator, batterypower soure, an power-onserving proessor loked at sev-eral hundred Mhz, program and data memory amounting toseveral tens of MBytes, a radio modem that employs someform of diversity oding [10℄, and an energy eÆient MAClayer based on, for example, TDMA [22℄. As suh, this nodewould be apable of running a possibly stripped-down ver-sion of a modern operating system; examples of suh oper-ating systems inlude Windows CE and �CLinux.Suh a node ould have one or more sensors. Examples ofsuh sensors inlude seismi geophones, infrared dipoles andeletret mirophones for aousti sensing. The analog-to-digital onversion system on suh nodes might produe upto70 ksamples per seond, at upto 12 bit resolution. For rea-sons of power onservation, some of the ommon signal pro-essing funtions may be o�oaded into a low-power ASIC.In this way, the main proessor need be woken up only whenevents of interest our. Finally, a sensor node may possessa fully-funtional GPS reeiver.Beause of their ompat form fator and their potentiallow ost, it might be possible for a densely|within tens offeet of eah other|paked luster of suh sensor nodes tobe deployed, in a possibly unplanned fashion, near the phe-nomena to be sensed|e.g., at busy intersetions, or in theinterior of large mahinery. The advantage of suh sensornetworks is that, even with relatively heap sensors, thesenodes an obtain high SNR (given that the signal gener-ated by any physial phenomena rapidly attenuates withdistane). Furthermore, given the spatial density of thesedeployments, an individual sensor node may not have tofrequently perform multi-target resolution (i.e. distinguishbetween di�erent targets suh as individuals and vehiles).Suh multi-target resolution an involve omplex deonvo-lution algorithms requiring non-trivial proessing apability[21℄.By ontrast, today's sensor deployments fall into two ate-gories. Large, omplex sensor systems are usually deployedvery far away from the phenomena to be sensed, and em-ploy omplex signal proessing algorithms to separate tar-gets from environmental noise. Alternately, a arefully en-gineered network of sensors is deployed in the �eld, but in-dividual sensors do not possess omputation apability, in-stead transmitting time series of the sensed phenomena toone or more nodes whih perform the data redution and�ltering.Should future sensor networks resemble sensor deploymentsof old? In partiular, should sensor nodes transmit timeseries of data to some entral node whih performs the tar-get resolution? One key onsideration in sensor networks|

energy eÆieny|ditates otherwise. Beause sensors arelikely to be battery-powered, and beause sensor networkswill be expeted to have lifetimes of several days (with possi-bly prolonged lulls in ativity), onserving battery resouresis a ruial requirement. This means that short-range hop-by-hop ommuniation is preferred over diret long-rangeommuniation to the destination. Coinidentally, suh hop-by-hop ommuniation also provides a form of ommunia-tion diversity in helping ommuniate around obstales [21℄.Energy eÆieny also implies that it is infeasible to trans-mit time-series data aross the network, even hop-by-hop.As [21℄ shows, performing loal omputation to redue databefore transmission an obtain orders of magnitude energysavings.These energy eÆieny onsiderations, oupled with the likelyavailability of proessing power and ommuniation apa-bility in sensor nodes, argues for a di�erent organizationof a sensor network. In this organization, individual nodesredue the sampled waveform generated by a target (e.g.,a pedestrian or a vehile) into a relatively oarse-grained\event" desription. This desription usually ontains a\odebook value"|an event ode|for the target, a times-tamp, a signal amplitude, and a degree of on�dene in theestimate. Nodes an then exhange these event desriptionswith their neighbors|who are also likely to have observedthe target|to re�ne the estimation, transmitting only ashort desription bak to a human operator.Informally, with suh an organization, a sensor network be-gins to look like a distributed omputing system. What om-muniation primitives an be employed in suh unattendedsensor networks? While it is not infeasible to design thesesensor networks using IP and ad-ho routing, the entralthesis of this paper is that a di�erent set of ommuniationprimitives an lead to more eÆient sensor data dissemina-tion.Consider a simple sensor network for remote surveillane ofa region. In pratie, suh a network might onsist of sev-eral hundreds or thousands of sensor nodes deployed withinthat region. In some ases, the sensor �eld may be deployedin a regular fashion (e.g. a 2-dimensional lattie, or a lineararray) within that region. More generally, however, ommu-niation and networking protools annot assume struturedsensor �elds.A user of this remote surveillane network would be able toontat (using, perhaps a long-range radio link) one of thesensors in the �eld, and pose the following task : \Every Ims for the next T seonds, send me a loation estimate ofany four-legged animal in subregion R of the sensor �eld".In general, the network may support a variety of task types.However, sensor networks are task-spei�|unlike generalpurpose ommuniation networks, the task types are knownat the time the sensor network is deployed2. We leveragethis important observation in our design.Using hop-by-hop wireless ommuniation and routing meh-anisms desribed in Setion 3, this task is onveyed to sensornodes in the subregion R of the sensor �eld. Eah node then2More aurately, sensor networks may be reprogrammable and the tasks theysupport may hange slowly over time.



tasks its sensors to ollet samples, and mathes the sam-pled waveform against a loally-stored library. If the nodedetets a waveform typial of a four-legged animal, it gen-erates 1/I event desriptions a milliseond, eah of whihontains the following items: its own loation, a odebookvalue orresponding to the animal, the intensity of the sig-nal, and a degree of on�dene in its estimation. Sensorswithin region R may oordinate to pik the best estimate.This estimate \paket" is then routed bak towards the taskoriginator.The fous of this paper is the design of dissemination meh-anisms for tasks and events. We desribe this disseminationmehanism in the ontext of the sensor network desribedabove, but with support for multiple onurrent task ini-tiations of the type spei�ed above. We later argue thatour overall approah, direted di�usion, applies more gener-ally to other kinds of distributed sensor oordination. Wefae several hallenges in designing these mehanisms. First,these mehanisms must sale to several thousands of sensornodes in the sensor �eld. Seond, sensor nodes may fail,may lose battery power, or may be temporarily unable toommuniate due to environmental fators. The dissemina-tion mehanisms must be robust to suh failures. Finally,wireless ommuniation even over relatively short distanesonsumes signi�ant energy. The dissemination mehanismsmust minimize energy usage.
3. DIRECTED DIFFUSIONDireted di�usion onsists of several elements. Data is namedusing attribute-value pairs. A sensing task (or a subtaskthereof) is disseminated throughout the sensor network asan interest for named data. This dissemination sets up gra-dients within the network designed to \draw" events (i.e.,data mathing the interest). Events start owing towardsthe originators of interests along multiple paths. The sensornetwork reinfores one, or a small number of these paths.Figure 1 illustrates these elements.In this setion, we desribe these elements of di�usion withspei� referene to a partiular kind of sensor network|one that supports the task desribed in Setion 2. Suh anetwork performs loation traking. As we shall see, sev-eral design hoies present themselves even in the ontextof this spei� instantiation of di�usion. We elaborate onthese design hoies while desribing the design of our sen-sor network. Our initial evaluation (Setion 4) fouses onlya subset of these design hoies.
3.1 NamingIn direted di�usion, task desriptions are named by, forexample, a list of attribute-value pairs that desribe a task.The animal traking task desribed in Setion 2 might bedesribed as (this is a simpli�ed desription, see Setion 3.2for more details):type = four-legged animal // detet animal loationinterval = 20 ms // send bak events every 20 msduration = 10 seonds // .. for the next 10 seondsret = [-100, 100, 200, 400℄ // from sensors within retangleFor ease of exposition, we hoose the subregion representa-tion to be a retangle de�ned on some oordinate system;

in pratie, this might be based on GPS oordinates.Intuitively, the task desription spei�es an interest for datamathing the attributes. For this reason, suh a task de-sription is alled an interest. The data sent in responseto interests are also named using a similar naming sheme.Thus, for example, a sensor that detets an animal mightgenerate the following data (see Setion 3.3 for an explana-tion of some of these attributes):type = four-legged animal // type of animal seeninstane = elephant // instane of this typeloation = [125, 220℄ // node loationintensity = 0.6 // signal amplitude measureonfidene = 0.85 // onfidene in the mathtimestamp = 01:20:40 // event generation timeGiven a set of tasks supported by a sensor network, then,seleting a naming sheme is the �rst step in designing di-reted di�usion for the network. For our sensor network, wehave hosen a simple attribute-value based interest and datanaming sheme. In general, eah attribute has an assoiatedvalue range. For example, the range of the type attribute isthe set of odebook values representing mobile objets (vehi-les, animal, humans). The value of an attribute an be anysubset of its range. In our example, the value of the typeattribute in the interest is that orresponding to four-leggedanimals.There are other hoies for attribute value ranges (e.g., hi-erarhial) and other naming shemes (suh as intentionalnames [1℄). To some extent, the hoie of naming shemean a�et the expressivity of tasks, and may impat perfor-mane of a di�usion algorithm. In this paper, our goal isto gain an initial understanding of the di�usion paradigm.For this reason, we defer the exploration of possible namingshemes to future work.
3.2 Interests and GradientsThe named task desription of Setion 3.1 onstitutes aninterest. An interest is usually injeted into the network atsome (possibly arbitrary) node in the network. We use theterm sink to denote this node.Given our hoie of naming sheme, we now desribe howinterests are di�used through the sensor network. Supposethat a task, with a spei�ed type and ret, a durationof 10 minutes and an interval of 10ms, is instantiated ata partiular node in the network. The interval parame-ter spei�es an event data rate; thus, in our example, thespei�ed data rate is 100 events per seond. This sink nodereords the task; the task state is purged from the node afterthe time indiated by the duration attribute.For eah ative task, the sink periodially broadasts an in-terest message to eah of its neighbors. This initial interestontains the spei�ed ret and duration attributes, butontains a muh larger interval attribute. Intuitively, thisinitial interest may be thought of as exploratory; it triesto determine if there indeed are any sensor nodes that de-tet the four-legged animal. To do this, the initial interestspei�es a low data rate (in our example, 1 event per se-
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() Data delivery along re-infored pathFigure 1: A simpli�ed shemati for direted di�usion.ond)3. In Setion 3.4, we desribe how the desired data rateis ahieved by reinforement. Then, the initial interest takesthe following form:type = four-legged animalinterval = 1sret = [-100, 200, 200, 400℄timestamp = 01:20:40 // hh:mm:ssexpiresAt = 01:30:40Before we desribe how interests are proessed, we empha-size that the interest is periodially refreshed by the sink.To do this, the sink simply re-sends the same interest witha monotonially inreasing timestamp attribute. This is ne-essary beause interests are not reliably transmitted through-out the network. The refresh rate is a protool design pa-rameter that trades o� overhead for inreased robustness tolost interests.Every node maintains an interest ahe. Eah item in theahe orresponds to a distint interest. Two interests aredistint, in our example, if their type attribute di�ers, theirinterval attribute di�ers, or their ret attributes are (pos-sibly partially) disjoint. Interest entries in the ahe donot ontain information about the sink. Thus, interest statesales with the number of distint ative interests. Our def-inition of distint interests also allows interest aggregation.Two interests I1 and I2, with idential types, ompletelyoverlapping ret attributes, an, in some situations, be rep-resented with a single interest entry.An entry in the interest ahe has several �elds. A timestamp�eld indiates the timestamp of the last reeived mathinginterest. The interest entry also ontains several gradient�elds, up to one per neighbor. Eah gradient ontains a datarate �eld requested by the spei�ed neighbor, derived fromthe interval attribute of the interest. It also ontains aduration �eld, derived from the timestamp and expiresAtattributes of the interest, and indiating the approximatelifetime of the interest.3This is not the only hoie, but represents a performane tradeoff. Sine theloation of the soures is not preisely known, interests must neessarily be dif-fused over a broader setion of the sensor network than that overed by thepotential soures. As a result, if the sink had hosen a higher initial data rate, ahigher energy onsumption might have resulted from the wider dissemination ofsensor data. However, with a higher initial data rate, the time to ahieve highfidelity traking is redued.

When a node reeives an interest, it heks to see if the in-terest exists in the ahe. If no mathing entry exists (wherea math is determined by the de�nition of distint interestsspei�ed above), the node reates an interest entry. Theparameters of the interest entry are instantiated from thereeived interest. This entry has a single gradient towardsthe neighbor from whih the interest was reeived, with thespei�ed event data rate. In our example, a neighbor of thesink will set up an interest entry with a gradient of 1 eventper seond towards the sink. For this, it must be possible todistinguish individual neighbors. Any loally unique neigh-bor identi�er may be used for this purpose. Examples ofsuh identi�ers inlude 802.11 MAC addresses [7℄, or Blue-tooth [10℄ luster addresses. If there exists an interest entry,but no gradient for the sender of the interest, the node addsa gradient with the spei�ed value. It also updates the en-try's timestamp and duration �elds appropriately. Finally,if there exists both an entry and a gradient, the node simplyupdates the timestamp and duration �elds.In Setion 3.3, we desribe how gradients are used. When agradient expires, it is removed from its interest entry. Notall gradients will expire at the same time. For example, iftwo di�erent sinks express indistint interests with di�erentexpiration times, some node in the network may have an in-terest entry with di�erent gradient expiration times. Whenall gradients for an interest entry have expired, the interestentry itself is removed from a ahe.After reeiving an interest, a node may deide to re-send theinterest to some subset of its neighbors. To its neighbors,this interest appears to originate from the sending node, al-though it might have ome from a distant sink. This isan example of a loal interation. In this manner, interestsdi�use throughout the network. Not all reeived interestsare re-sent. A node may suppress a reeived interest if itreently re-sent a mathing interest.Generally speaking, there are several possible hoies forneighbors (Figure 3). The simplest alternative is to re-broadast the interest to all neighbors. This is equivalentto ooding the interest throughout the network; in the ab-sene of information about whih sensor nodes are likely tobe able to satisfy the interest, this is the only hoie. Thisis also the alternative that we simulate in Setion 4. In ourexample sensor network, it may also be possible to perform



geographi routing, using some of the tehniques desribedin the literature [14℄. This an limit the topologial sopefor interest di�usion, thereby resulting in energy savings.Finally, in an immobile sensor network, a node might useahed data (see Setion 3.3) to diret interests. For exam-ple, if in response to an earlier interest, a node heard fromsome neighbor A data sent by some sensor within the regionspei�ed by the ret attribute, it an diret this interest toA, rather than broadasting to all neighbors.Figure 2(a) shows the gradients established in the ase whereinterests are ooded through a sensor �eld. Unlike the sim-pli�ed desription in Figure 1(b), notie that every pair ofneighboring nodes establishes a gradient towards eah other.This is a ruial onsequene of loal interations. When anode reeives an interest from its neighbor, it has no way ofknowing whether that interest was in response to one it sentout earlier, or is an idential interest from another sink onthe \other side" of that neighbor. Suh two-way gradientsan ause a node to reeive one opy of low data rate eventsfrom eah of its neighbors. However, as we show later, thistehnique an enable fast reovery from failed paths or re-inforement of empirially better paths (Setion 3.4), anddoes not inur persistent loops (Setion 3.3).Note that for our sensor network, a gradient spei�es botha data rate and a diretion in whih to send events. Moregenerally, a gradient spei�es a value and a diretion. Thedireted di�usion paradigm gives the designer the freedomto attah di�erent semantis to gradient values. We haveshown two examples of gradient usage. Figure 1() impliitlydepits binary valued gradients. In our sensor networks,gradients have two values that determine event reportingrate. In other sensor networks, gradient values might beused to, for example, probabilistially forward data alongdi�erent paths, ahieving some measure of load balaning(Figure 3).In summary, interest propagation sets up state in the net-work (or parts thereof) to failitate \pulling down" datatowards the sink. The interest propagation rules are loal,and bear some resemblane to join propagation in some In-ternet multiast routing protools [9℄. One ruial di�ereneis that join propagation an leverage uniast routing tablesto diret joins towards soures, whereas interest propagationannot.In this setion, we have desribed interest propagation rulesfor a partiular type of task. More generally, a sensor net-work may support many di�erent task types. Interest prop-agation rules may be di�erent for di�erent task types. Forexample, a task type of the form \Count the number of dis-tint four-legged animals in retangle R seen over the next Tseonds" annot leverage the event data rate as our exampledoes. However, some elements of interest propagation aresimilar to both: the form of the ahe entries, the interestre-distribution rules et.. As part of our future researh, wehope to ull these similarities into a di�usion substrate ateah node, so that sensor network designers an use a libraryof interest propagation tehniques (or, for that matter, rulesdisussed in the subsequent setions for data proessing andreinforement) for di�erent task types.

3.3 Data PropagationA sensor node that is within the spei�ed ret proessesinterests as desribed in the previous setion. In addition,the node tasks its loal sensors to begin olleting samples.In this paper, we do not disuss the details of target reog-nition algorithms. Briey, these algorithms simply mathsampled waveforms against a library of pre-sampled, storedwaveforms. This is based on the observation that a four-legged animal has a di�erent aousti or seismi footprintthan, for example, a human being. The sampled waveformmay math the stored waveform to varying extents; the al-gorithms usually assoiate a degree of on�dene with themath. Furthermore, the intensity of the sampled waveformmay roughly indiate distane of the signal origin, thoughperhaps not diretion.A sensor node that detets a target searhes its interestahe for a mathing interest entry. In this ase, a mathingentry is one whose ret enompasses the sensor loation,and the type of the entry mathes the deteted target type.When it �nds one, it omputes the highest requested eventrate among all its outgoing gradients. The node tasks itssensor subsystem to generate event samples at this highestdata rate. In our example, this data rate is initially 1 eventper seond (until reinforement is applied, Setion 3.4). Thesoure then sends to eah neighbor for whom it has a gradi-ent, an event desription every seond of the form:type = four-legged animal // type of animal seeninstane = elephant // instane of this typeloation = [125, 220℄ // node loationintensity = 0.6 // signal amplitude measureonfidene = 0.85 // onfidene in the mathtimestamp = 01:20:40 // loal time when event was generatedThis data message is, in e�et4, uniast individually to therelevant neighbors.A node that reeives a data message from its neighbors at-tempts to �nd a mathing interest entry in its ahe. Themathing rule is as desribed in the previous paragraph. Ifno math exists, the data message is silently dropped. Ifa math exists, the node heks the data ahe assoiatedwith the mathing interest entry. This ahe keeps trak ofreently seen data items. It has several potential uses, oneof whih is loop prevention. If a reeived data message hasa mathing data ahe entry, the data message is silentlydropped. Otherwise, the reeived message is added to thedata ahe and the data message is re-sent to the node'sneighbors.By examining its data ahe, a node an determine the datarate of reeived events5. To re-send a reeived data mes-sage, a node needs to examine the mathing interest entry'sgradient list. If all gradients have a data rate that is greaterthan or equal to the rate of inoming events, the node maysimply send the reeived data message to the appropriateneighbors. However, if some gradients have a lower datarate than others (aused by seletively reinforing paths,4The exat mehanism used is a funtion of the radio's MAC layer and an havea signifiant impat on performane (Setion 4.4).5In our simulations in Setion 4, as a simplifiation, we inlude the data rate inthe event desriptions.
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3.4 ReinforcementIn the sheme we have desribed so far, the sink initiallydi�uses an interest for a low event-rate noti�ation (1 eventper seond). One soures detet a mathing target, theysend low-rate events, possibly along multiple paths, towardsthe sink. After the sink starts reeiving these low datarate events, it reinfores one partiular neighbor in orderto \draw down" higher quality (higher data rate) events. Ingeneral, this novel feature of direted di�usion is ahieved bydata driven loal rules. One example of suh a rule is to re-infore any neighbor from whih a node reeives a previouslyunseen event. To reinfore this neighbor, the sink re-sendsthe original interest message but with a smaller interval(higher data rate):type = four-legged animalinterval = 10msret = [-100, 200, 200, 400℄timestamp = 01:22:35expiresAt = 01:30:40When the neighboring node reeives this interest, it no-ties that it already has a gradient towards this neighbor.Furthermore, it noties that the sender's interest spei�esa higher data rate than before. If this new data rate isalso higher than that of any existing gradient (intuitively, ifthe \outow" from this node has inreased), the node mustalso reinfore at least one neighbor. How does it do this?

The node uses its data ahe for this purpose. Again, thesame loal rule hoies apply. For example, this node mighthoose that neighbor from whom it �rst reeived the latestevent mathing the interest. Alternatively, it might hooseall neighbors from whih new events6 were reently reeived(this is the alternative we evaluate in Setion 4). Throughthis sequene of loal interations, a path is established fromsoure to sink transmission for high data rate events.The loal rule we desribed above, then, selets an empir-ially low delay path (Figure 2(b) shows the path that anresult when the sink reinfores the path). It is very rea-tive to hanges in path quality; whenever one path deliv-ers an event faster than others, the sink attempts to usethis path to draw down high quality data. However, be-ause it is triggered by reeiving one new event, this ouldbe wasteful of resoures. More sophistiated loal rules arepossible (Figure 3), inluding hoosing that neighbor fromwhih the most events have been reeived, or that neigh-bor whih onsistently sends events before other neighbors.These hoies trade o� reativity for inreased stability; ex-ploring this tradeo� requires signi�ant experimentation andis the subjet of future work.The algorithm desribed above an result in more than onepath being reinfored. For example, if the sink reinforesneighbor A, but then reeives a new event from neighbor B,it will reinfore the path through B7. If the path through Bis onsistently better (i.e.,B sends events beforeA does), weneed a mehanism to negatively reinfore the path throughA.One mehanism for negative reinforement is to time out allhigh data rate gradients in the network unless they are ex-pliitly reinfored. With this approah, the sink would peri-odially reinfore neighbor B, and ease reinforing neighborA. The path throughA would eventually degrade to the lowdata rate. Another approah, and one that we evaluate inthis paper, is to expliitly degrade the path through A byre-sending the interest with the lower data rate. WhenA re-eives this interest, it degrades its gradient towards the sink.Furthermore, if all its gradients are now low data rate, A6The statement \reinfore a neighbor from whih new events are reeived" im-plies that we reinfore that neighbor only if it is sending low data rate events.Obviously, we do not need to reinfore neighbors that are already sending traffiat the higher data rate.7This path may or may not be ompletely disjoint from the path through neigh-bor A.



Di�usion element Design Choies� FloodingInterest Propagation � Constrained or diretional ooding based on loation� Diretional propagation based on previously ahed data� Reinforement to single path deliveryData Propagation � Multipath delivery with seletive quality along di�erent paths� Multipath delivery with probabilisti forwarding� For robust data delivery in the fae of node failureData ahing and aggregation � For oordinated sensing and data redution� For direting interests� Rules for deiding when to reinforeReinforement � Rules for how many neighbors to reinfore� Negative reinforement mehanisms and rulesFigure 3: Design Spae for Di�usionnegatively reinfores those neighbors that have been send-ing data to it at a high data rate. This sequene of loalinterations ensures that the path through A is degradedrapidly, but at the ost of inreased resoure utilization.To omplete our desription of negative reinforement, weneed to speify what loal rule a node uses in order to de-ide whether to negatively reinfore a neighbor or not. Notethat this rule is orthogonal to the hoie of mehanism fornegative reinforement. One plausible hoie for suh a ruleis to negatively reinfore that neighbor from whih no newevents have been reeived (i.e., other neighbors have onsis-tently sent events before this neighbor) within a window ofN events or time T . The loal rule we evaluate in Setion 4is based on a time window of T , hosen to be 2 seonds inour simulations. Suh a rule is a bit onservative and en-ergy ineÆient. For example, even if one event in ten wasreeived �rst from neighbor A, the sink will not negativelyreinfore that neighbor. Other variants inlude negativelyreinforing that neighbor from whih fewer new events havebeen reeived. Signi�ant experimentation is required be-fore deiding whih loal rule ahieves an energy eÆientglobal behavior.In desribing reinforement so far, we may have appearedto impliitly desribe a single-soure senario. In fat, therules we have desribed work with multiple soures. To seethis, onsider Figure 2(). Assume initially that all initialgradients are low data rate. Aording to this topology, datafrom both soures reahes the sink via both of its neighborsC and D. If one of the neighbors, say C has onsistentlylower delay, our rules will only reinfore the path throughC (this is depited in the �gure). However, if the sink hearsB's events earlier via D, but A's events8 earlier via C, thesink will attempt to draw down high quality data streamsfrom both neighbors (not shown). In this ase, the sink getsboth soures' data from both neighbors, a potential soureof energy ineÆieny. Reinforement rules that avoid this isthe subjet of future work.Similarly, if two sinks express idential interests, our interestpropagation, gradient establishment and reinforement ruleswork orretly. Without loss of generality, assume that sinkY in Figure 2(d) has already reinfored a high quality path8Note that in direted diffusion, the sink would not be able to assoiate a sourewith an event. Thus, the phrase \A's events" is somewhat misleading. What wereally mean is that data generated by A that is distinguishable in ontent fromdata generated by B.

to the soure. Note however, that other nodes ontinue toreeive low data rate events. When a human operator tasksthe network at sink X with an idential interest, X anuse the reinforement rules to ahieve the path shown. Todetermine the empirially best path, X need not wait fordata|rather, it an use its data ahe to immediately drawdown high quality data towards itself.So far, we have desribed situations in whih reinforementis triggered by a sink. However, in direted di�usion, inter-mediate nodes on a previously reinfored path an apply thereinforement rules. This is useful to enable loal repair offailed or degraded paths. Causes for failure or degradationinlude node energy depletion, and environmental fators af-feting ommuniation (e.g., obstales, rain fade). ConsiderFigure 2(e), in whih the quality of the link between thesoure and node C degrades and events are frequently or-rupted. When C detets this degradation|either by noti-ing that the event reporting rate from its upstream neigh-bor (the soure) is now lower, or by realizing that otherneighbors have been transmitting previously unseen loa-tion estimates|it an apply the reinforement rules to dis-over the path shown in the �gure. Eventually, C negativelyreinfores the diret link to the soure (not shown in the �g-ure). Our desription so far has glossed over the fat that astraightforward appliation of reinforement rules will auseall nodes downstream of the lossy link to also initiate re-inforement proedures. This will eventually lead to thedisovery of one empirially good path, but may result inwasted resoures. One way to avoid this is for C to inter-polate loation estimates from the events that it reeives sothat downstream nodes still pereive high quality traking.We are urrently investigating other approahes.
3.5 DiscussionIn introduing the various elements of direted di�usion, wealso impliitly desribed a partiular usage|interests setup gradients drawing down data. The direted di�usionparadigm itself does not limit the designer to this partiularusage. Other usages are also possible, suh as the one inwhih nodes may propagate data in the absene of interests,impliitly setting up gradients when doing so. This is useful,for example, to spontaneously propagate an important eventto some setion of the sensor �eld. A sensor node an usethis to warn other sensor nodes of impending ativity.Our desription points out several key features of di�usion,



and how it di�ers from traditional networking. First, di�u-sion is data-entri; all ommuniation in a di�usion-basedsensor network uses interests to speify named data. Allommuniation in di�usion is neighbor-to-neighbor, unlikethe end-to-end ommuniation in traditional data networks.In other words, every node is an \end" in a sensor net-work. Seond, there are no \routers" in a sensor network.Eah sensor node an interpret data and interest messages.This design hoie is justi�ed by the task-spei�ity of sen-sor networks. Sensor networks are not general-purpose om-muniation networks. Third, sensor nodes do not need tohave globally unique identi�ers or globally unique addresses.Nodes, however, do need to distinguish between neighbors.Finally, in an IP-based sensor network, for example, sensordata olletion and proessing might be performed by a ol-letion of speialized servers whih may, in general, be farremoved from the sensed phenomena. In our sensor network,beause every node an ahe, aggregate, and more gener-ally, proess messages, it is possible to perform oordinatedsensing lose to the sensed phenomena.Di�usion is learly related to traditional network data rout-ing algorithms. In some sense, it is a reative routing teh-nique, sine \routes" are established on demand. However,it di�ers from other ad-ho reative routing tehniques inseveral ways. First, no attempt is made to �nd one loop-free path between soure and sink before data transmissionommenes. Instead, onstrained or diretional ooding isused to set up a multipliity of paths, and data messagesare initially sent redundantly along these paths. Seond,soon thereafter, reinforement attempts to redue this mul-tipliity of paths to a small number, based on empiriallyobserved path performane. Finally, a message ahe is usedto perform loop avoidane. The interest and gradient setupmehanisms themselves do not guarantee loop-free paths be-tween soure and sink.Why this peuliar hoie of design? At the outset of thisresearh, we onsiously hose to explore path setup al-gorithms that establish network paths using stritly loal(neighbor-to-neighbor) ommuniation. The intuition be-hind this hoie is the observation that physial systems(e.g., ant olonies [5℄) that build up transmission paths us-ing suh ommuniation sale well and are extraordinarilyrobust. However, using stritly loal ommuniation im-plies that path setup annot use global topology metris;loal ommuniation implies that, as far as a node knows,the data that it reeived from a neighbor ame from thatneighbor 9. This an be energy eÆient in highly dynaminetworks when hanges in topology need not be propagatedaross the network. Of ourse, the resulting ommuniationpaths may be sub-optimal. However, the energy ineÆienydue to path sub-optimality an be ountered by arefullydesigned in-network aggregation tehniques. Overall, we be-lieve that this approah trades o� some energy eÆieny forinreased robustness and sale.Finally, it might appear that the partiular instantiationthat we hose, loation traking, has limited appliability.We believe, however, that suh loation traking apturesmany of the essential features of a large lass of remote9The loation information in a data message might reveal otherwise, but thatinformation still doesn't ontain topology metris.

surveillane sensor networks. We emphasize that, even thoughwe have disussed our traking network in some detail, muhexperimentation and evaluation of the various mehanisms isneessary before we fully understand the robustness, saleand performane impliations of di�usion in general, andsome of our mehanisms in partiular. The next setiontakes an initial step in this diretion.
4. EVALUATING DIRECTED DIFFUSIONIn this setion, we report on some results from a prelimi-nary performane evaluation of our loation traking sen-sor network. We use paket-level simulation to explore, insome detail, the impliations of some of our design hoies.This setion desribes our methodology, ompares the per-formane of di�usion against some idealized shemes, thenexplores impat of network dynamis on simulation.
4.1 Goals, Metrics, and MethodologyWe implemented our animal traking instane of direteddi�usion in the ns-2 [2℄ simulator. Our goals in ondutingthis evaluation study were four-fold: First, plae the per-formane of di�usion in the ontext of idealized shemes,suh as ooding and omnisient multiast (desribed be-low). This serves as a sanity hek for the intuition be-hind direted di�usion. Seond, understand the impat ofdynamis|suh as node failures|on di�usion. Third, ex-plore the inuene of the radio MAC layer on di�usion per-formane. Finally, study the sensitivity of direted di�usionperformane to the hoie of parameters.We hoose two metris to analyze the performane of di-reted di�usion and to ompare it to other shemes: Av-erage dissipated energy measures the ratio of total dis-sipated energy per node in the network to the number ofdistint events seen by sinks. This metri omputes theaverage work done by a node in delivering useful trakinginformation to the sinks. The metri also indiates the over-all lifetime of sensor nodes. Average delay measures theaverage one-way lateny observed between transmitting anevent and reeiving it at eah sink. This metri de�nes thetemporal auray of the loation estimates delivered by thesensor network. We study these metris as a funtion of sen-sor network size.In all our experiments, we operate the sensor network in aregime far from overload. Thus, our sensor nodes do notexperiene ongestion. We do this to simplify our under-standing of the results. Exploring the behavior of di�u-sion under ongestion is the subjet of future researh. Inpassing, we note that there exist plausible approahes (suhas in-network data rate downonversion or aggressive dataquality redution through aggregation) for dealing with on-gestion in di�usion-based sensor networks.Despite this fous on unongested operating regimes, di-reted di�usion an inur event losses, partiularly underdynamis. In these situations, another metri for the per-formane of di�usion, is the event delivery ratio. This is theratio of the number of distint events reeived to the numberoriginally sent. A similar metri was used in earlier work toompare ad-ho routing shemes [4℄.To ompletely speify our experimental methodology, we



need to desribe the sensor network generation proedure,our hoie of radio parameters, and our workload. The fol-lowing paragraphs do this.In order to study the performane of di�usion as a fun-tion of network size, we generate a variety of sensor �eldsof di�erent sizes. In eah of our experiments, we study �vedi�erent sensor �elds, ranging from 50 to 250 nodes in in-rements of 50 nodes. Our 50 node sensor �eld generatedby randomly plaing the nodes in a 160m by 160m square.Eah node has a radio range of 40m. Other sizes are gen-erated by saling the square and keeping the radio rangeonstant in order to approximately keep the average densityof sensor nodes onstant. For eah network size, our resultsare averaged over three di�erent generated �elds.The ns-2 simulator implements a 1.6 Mbps 802.11 MAClayer. Our simulations use this MAC layer. This is not aompletely satisfatory hoie of MAC layer, sine there areompelling energy eÆieny reasons for seleting a TDMA-style MAC for sensor networks rather than one based onhannel aquisition using RTS/CTS [21℄. Briey, these rea-sons have to do with energy onsumed by the radio duringidle intervals; with a TDMA-style MAC, it is possible toput the radio in standby mode during suh intervals. Byontrast, an 802.11 radio onsumes as muh power when itis idle as when it reeives transmissions. To more loselymimi realisti sensor network radios [13℄, we altered thens-2 radio energy model suh that the idle time power dissi-pation was about 35mW, or nearly 10% of its reeive powerdissipation (395mW), and about 5% of its transmit powerdissipation (660mW). In Setion 4.4, we analyze the impatof a MAC energy model in whih listening for transmissionsdissipates as muh energy as reeiving them.Finally, in most of our simulations, we use a �xed workloadwhih onsists of �ve soures and �ve sinks. All souresare randomly seleted from nodes in a 70m by 70m squarewithin the sensor �eld. Sinks are uniformly sattered arossthe sensor �eld. Eah soure generates two events per se-ond. The low data rate for direted di�usion was hosento be one event in 50 seonds. Events were modeled as 64byte pakets, interests as 36 byte pakets. Interests wereperiodially generated every 5 seonds, and the interest du-ration was 15 seonds. We hose the window for negativereinforement to be 2 seonds.
4.2 Comparative EvaluationOur �rst experiment ompares di�usion to two idealizedshemes for data dissemination in networks. In the ood-ing sheme, soures ood all events to every node in thenetwork. Flooding is a watermark for direted di�usion;if the latter is not signi�antly more energy eÆient thanooding, it annot be onsidered viable for sensor networks.In the omnisient multiast sheme, eah soure trans-mits its events along a shortest-path multiast tree to allsinks. We do not simulate the tree onstrution protools.Rather, we entrally ompute the distribution trees and donot assign energy osts to this omputation. Omnisientmultiast approximately indiates the performane ahiev-able in an IP-based sensor network. We use this shemeto give the reader some intuition for how our mehanismhoies impat performane.

Figure 4(a) shows the average dissipated energy per paketas a funtion of network size. Omnisient multiast dissi-pates a little less than a half as muh energy per paketper node than ooding. It ahieves suh energy eÆienyby delivering events along a single path from eah soureto every sink. Direted di�usion has notieably better en-ergy eÆieny than omnisient multiast. For some sensor�elds, its dissipated energy is only 60% that of omnisientmultiast. As with omnisient multiast, it also ahievessigni�ant energy savings by reduing the number of pathsover whih redundant data is delivered. In addition, di�u-sion bene�ts signi�antly from in-network aggregation. Inour experiments, the soures deliver idential loation esti-mates, and intermediate nodes suppress dupliate loationestimates. This orresponds to the situation where there is,for example, a single four-legged animal within the spei�edsub-region.Why then, given that there are �ve soures, is di�usion notnearly �ve times more energy eÆient than omnisient mul-tiast? First, both shemes expend omparable|and non-negligible|energy listening for transmissions. Seond, ourhoie of reinforement and negative reinforement resultsin direted di�usion frequently drawing down high qualitydata along multiple paths, thereby expending additional en-ergy. Spei�ally, our reinforement rule that reinfores aneighbor who sends a new (i.e., previously unseen) eventis very aggressive. Conversely, our negative reinforementrule, whih negatively reinfores neighbors who only onsis-tently send dupliate (i.e., previously seen) events, is veryonservative.Figure 4(b) plots the average delay observed as a funtionof network size. Direted di�usion has a delay omparableto omnisient multiast. This is enouraging. To a �rst ap-proximation, in an unongested sensor network and in theabsene of obstrutions, the shortest path is also the lowestdelay path. Thus, our reinforement rules seem to be �nd-ing the low delay paths. However, the delay experiened byooding is almost an order of magnitude higher than othershemes. This is an artifat of the MAC layer: to avoidbroadast ollisions, a randomly hosen delay is imposed onall MAC broadasts. Flooding uses MAC broadasts exlu-sively. Di�usion only uses suh broadasts to propagate theinitial interests. On a sensor radio that employs a TDMAMAC-layer, we might expet ooding to exhibit a delay om-parable to the other shemes.
4.3 Impact of DynamicsTo study the impat of dynamis on direted di�usion, wesimulated node failures as follows. For eah sensor �eld,repeatedly turned o� a �xed fration of nodes for 30 se-onds. These nodes were uniformly hosen from the sensor�eld, with the additional onstraint that an equal frationof nodes on the soures to sinks shortest path trees wasalso turned o� for the same duration. The intent was toreate node failures in the paths di�usion is most likely touse, and to reate random failures elsewhere in the network.Furthermore, unlike the previous experiment, eah souresends di�erent loation estimates (orresponding to the sit-uation in whih eah soure \sees" di�erent animals). Wedid this beause the impat of dynamis is less evident whendi�usion suppresses idential loation estimates from other
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under dynamis, inur remarkably higher energy dissipationor event delivery delays.
4.4 Impact of Various FactorsTo explain what ontributes to direted di�usion's energyeÆieny, we now desribe two separate experiments. Inboth of these experiments, we do not simulate node failures.First, we ompute the energy eÆieny of di�usion with andwithout aggregation. Reall from Setion 4.2 that in oursimulations, we implement a simple aggregation strategy,in whih a node suppresses idential data sent by di�erentsoures. As Figure 6(b) shows, di�usion expends nearly 5times as muh energy, in smaller sensor �elds, as when itan suppress dupliates. In larger sensor �elds, the ratiois 3. Our onservative negative reinforement rule aountsfor the di�erene in the performane of di�usion withoutsuppression as a funtion of network size. With the samenumber of soures and sinks, the larger network has longeralternate paths. These alternate paths are trunated by neg-ative reinforement beause they onsistently deliver eventswith higher lateny. As a result, the larger network expendsless energy without suppression. We believe that suppres-sion also exhibits the same behavior, but the energy di�er-ene is relatively small.The seond mehanism whose bene�ts we quantify is neg-ative reinforement. This mehanism prunes o� higher la-



teny paths, and an ontribute signi�antly to energy sav-ings. In this experiment, we seletively turn o� negative re-inforement and ompare the performane of direted di�u-sion with and without reinforement. Intuitively, one wouldexpet negative reinforement to ontribute signi�antly toenergy savings. Indeed, as Figure 6(a) shows, di�usion with-out negative reinforement expends nearly twie as muhenergy as when negative reinforement is employed. Thissuggests that even our onservative negative reinforementrules prune o� paths whih deliver onsistently higher la-teny.In the absene of negative reinforement or suppression, dif-fusion's delay inreases by fators of three to eight (thegraphs are not inluded for lak of spae). This is an ar-tifat of the 802.11 MAC layer. In di�usion, data traÆ istransmitted using MAC uniast. As more paths are used(in the absene of negative reinforement), or more opiesof data are sent (without suppression), MAC-layer hannelontention inreases, resulting in bako�s and subsequentdelays.Finally, we evaluate the sensitivity of our omparisons (Se-tion 4.2) to our hoie of energy model. Sensitivity of di�u-sion to other fators (numbers of sinks, size of soure region)is disussed in greater detail in [11℄.In our omparisons, we seleted radio power dissipation pa-rameters to more losely mimi realisti sensor radios [13℄.We re-ran the omparisons of Setion 4.2, but with powerdissipation omparable to the AT&T Wavelan: 1.6W trans-mission, 1.2W reeption and 1.15W idle. In this ase, asFigure 6() shows, the distintion between the shemes dis-appears. In this regime, we are better o� ooding all events.This is beause idle time energy utilization ompletely dom-inates the performane of all shemes. This is the reasonwhy sensor radios try very hard to minimize listening fortransmissions.
5. RELATED WORKTo our knowledge, distributed sensor networks have not beenextensively studied in the networking literature. However,our work has been informed and inuened by a variety ofother researh e�orts, whih we now desribe.Distributed sensor networks are a spei� instane of ubiq-uitous omputing as envisioned by Weiser [24℄. Early ubiq-uitous omputing e�orts, however, did not approah the is-sues of salable node oordination, fousing more on issuesin the design and pakaging of small, wireless devies. Morereent e�orts, suh as WINS [22℄ and Pionet [3℄ have be-gun to onsider networking and ommuniation issues forsmall wireless devies. The WINS projet has made signi�-ant progress in identifying feasible radio designs for low-power environmental sensing. Their projet has fousedalso on low-level network synhronization neessary for net-work self-assembly. Our direted di�usion primitives pro-vide inter-node ommuniation one network self-assemblyis omplete. Although the Pionet projet is more fousedon enabling home and oÆe information disovery, their ap-pliation designs have some similarity to the data ahingand aggregation that di�usion employs.

In addition, reent work has pointed out some of the advan-tages of di�usion-like appliation-spei�ity in the ontext ofsensor networks [15℄. Spei�ally, this work showed how em-bedding appliation semantis in ooding an help ahieveenergy-eÆieny. Direted di�usion explores some of thesesame ideas in the ontext of more sophistiated distributedsensing algorithms.Some of the inspiration for direted di�usion omes frombiologial metaphors, suh as reation-di�usion models formorphogenesis [23℄, and models of ant olony behavior [5℄.Direted di�usion borrows heavily from the literature on ad-ho uniast routing. Spei�ally, it is a lose kin of the lassof several reative routing protools proposed in the litera-ture [12, 20, 19℄. Of these, it is possibly losest to [19℄ inits attempt to loalize repair of node failures, and its deem-phasis of optimal routes. The di�erenes between ad-horouting and direted di�usion have already been disussedin Setion 3.5.Many of the tehniques developed for improving ad ho rout-ing performane an be diretly applied to direted di�usion.In this lass, we inlude tehniques that redue the impat ofbroadast storms [17℄, tehniques that loalize route queriesbased on geographial information [14℄ or based on routehistory [6℄. Direted di�usion has the additional degree offreedom in being able to use appliation semantis to ahievefurther eÆienyDireted di�usion is inuened by the design of multiastrouting protools. In partiular, propagation of reinfore-ments and negative reinforements are similar to joins andprunes in shared-tree onstrution [9℄. The initial interestdissemination and gradient setup is similar to data-drivenshortest-path tree setup [8℄. The di�erene, of ourse, is thatwhere Internet protools rely on underlying uniast routingto aid tree setup, di�usion annot. Di�usion an, however,do in-network proessing of data (ahing and aggregation)unlike existing multiast routing shemes.The in-network proessing feature of direted di�usion bearssome resemblane to router assist for loalized error reov-ery in reliable multiast [16, 18℄. These shemes allow min-imal router funtionality that allows speialized forwardingmodes for ertain kinds of data. Direted di�usion arriesthis idea further, leveraging the task spei�ity of sensornetworks to embed appliation knowledge in network nodes.Finally, interest dissemination, data propagation and ahingin direted di�usion are all similar to some of the ideas usedin adaptive Web ahing [25℄. In these shemes, ahes self-organize themselves into a hierarhy of ooperative ahesthrough whih requests for pages are e�etively di�used.
6. CONCLUSIONS AND FUTURE WORKIn this paper, we desribed the direted di�usion paradigmfor designing distributed sensing algorithms. There are sev-eral lessons we an draw from our preliminary evaluation ofdi�usion. First, direted di�usion has the potential for sig-ni�ant energy eÆieny. Even with relatively unoptimizedpath seletion, it outperforms an idealized traditional datadissemination sheme like omnisient multiast. Seond, dif-
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