
Supporting Real-Time Applications in an Integrated Services Packet Network:Architecture and MechanismDavid D. Clark1Laboratory for Computer ScienceMassachusetts Institute of Technologyddc@lcs.mit.edu Scott Shenker Lixia ZhangPalo Alto Research CenterXerox Corporationshenker, lixia@parc.xerox.comAbstractThis paper considers the support of real-time applicationsin an Integrated Services Packet Network (ISPN). We �rstreview the characteristics of real-time applications. We ob-serve that, contrary to the popular view that real-time ap-plications necessarily require a �xed delay bound, some real-time applications are more 
exible and can adapt to currentnetwork conditions. We then propose an ISPN architec-ture that supports two distinct kinds of real-time service:guaranteed service, which is the traditional form of real-time service discussed in most of the literature and involvespre-computed worst-case delay bounds, and predicted servicewhich uses the measured performance of the network in com-puting delay bounds. We then propose a packet schedulingmechanism that can support both of these real-time servicesas well as accommodate datagram tra�c. We also discusstwo other aspects of an overall ISPN architecture: the ser-vice interface and the admission control criteria.1 IntroductionThe current generation of telephone networks and the cur-rent generation of computer networks were each designed tocarry speci�c and very di�erent kinds of tra�c: analog voiceand digital data. However, with the digitizing of telephonyin ISDN and the increasing use of multi-media in computerapplications, this distinction is rapidly disappearing. Merg-ing these sorts of services into a single network, which we re-fer to here as an Integrated Services Packet Network (ISPN),would yield a single telecommunications infrastructure o�er-ing a multitude of advantages, including vast economies ofscale, ubiquity of access, and improved statistical multiplex-ing. There is a broad consensus, at least in the computernetworking community, that an ISPN is both a worthy andan achievable goal. However, there are many political, ad-ministrative, and technical hurdles to overcome before thisvision can become a reality.1Research at MIT was supported by DARPA through NASAGrantNAG 2-582, by NSF grant NCR-8814187, and by DARPA and NSFthrough Cooperative Agreement NCR-8919038 with the Corporationfor National Research Initiatives.

One of the most vexing technical problems that blocksthe path towards an ISPN is that of supporting real-timeapplications in a packet network. Real-time applicationsare quite di�erent from standard data applications, and re-quire service that cannot be delivered within the typical dataservice architecture. In Section 2 we discuss the nature ofreal-time applications at length; here, however, it su�cesto observe that one salient characteristic of the real-timeapplications we consider is that they require a bound onthe delivery delay of each packet2. While this bound maybe statistical, in the sense that some small fraction of thepackets may fail to arrive by this bound, the bound itselfmust be known a priori. The traditional data service archi-tecture underlying computer networks has no facilities forprescheduling resources or denying service upon overload,and thus is unable to meet this real-time requirement.Therefore, in order to handle real-time tra�c, an en-hanced architecture is needed for an ISPN. We identify fourkey components to this architecture. The �rst piece of thearchitecture is the nature of the commitments made by thenetwork when it promises to deliver a certain quality of ser-vice. We identify two sorts of commitments, guaranteed andpredicted. Predicted service is a major aspect of our paper.While the idea of predicted service has been considered be-fore, the issues that surround it have not, to our knowledge,been carefully explored.The second piece of the architecture is the service inter-face, i.e., the set of parameters passed between the sourceand the network. The service interface must include boththe characterization of the quality of service the network willdeliver, ful�lling the need of applications to know when theirpackets will arrive, and the characterization of the source'stra�c, thereby allowing the network to knowledgeably al-locate resources. In this paper we attempt to identify thecritical aspects of the service interface, and o�er a particularinterface as an example. We address in passing the need forenforcement of these characterizations.The third piece of the architecture is the packet schedul-ing behavior of network switches needed to meet these ser-vice commitments. We discuss both the actual schedulingalgorithms to be used in the switches, as well as the schedul-ing information that must be carried in packet headers. This2Since the term bound is tossed around with great abandon in therest of the paper, we need to identify several di�erent meanings tothe term. An a priori bound on delay is a statement that none ofthe future delays will exceed that amount. A post facto bound is themaximal value of a set of observed delays. Statistical bounds allowfor a certain percentage of violations of the bound; absolute boundsallow none.



part of the architecture must be carefully considered; since itmust be executed for every packet it must not be so complexas to e�ect overall network performance.The �nal part of the architecture is the means by whichthe tra�c and service commitments get established. Clearly,the ability of the network to meet its service commitments isrelated to the criteria the network uses to decide whether toaccept another request for service. While we do not presenta speci�c algorithm to regulate the admission of new sources,we show the relation between the other parts of our proposaland a general approach to the admission control problem.There are also many architectural issues not directly re-lated to the nature of real-time tra�c; for instance, the is-sues of routing and interaction of administrative domainsall pose interesting challenges. We do not address these is-sues in this paper, and any �nal architectural proposal foran ISPN must solve these longstanding problems. It is im-portant to note, however, that we do not believe that thearchitectural choices we advocate here for real-time tra�cunnecessarily restrict the scope of solutions to these otherproblems.This paper has 12 Sections and an Appendix. In Section2 we begin with a discussion of the nature of real-time traf-�c. In particular, we note that some real-time applicationscan adapt to current network conditions. This leads us topropose, in Section 3, that the ISPN support two kinds ofreal-time service commitments: guaranteed service and pre-dicted service. In Section 4 we present a time-stamp basedscheduling algorithm which is a nonuniformly weighted ver-sion of the Fair Queueing algorithm discussed in Reference[4], and then refer to a recent result due to Parekh and Gal-lager (see References [19, 20]) which states that, under cer-tain conditions, this algorithm delivers guaranteed service ina network of arbitrary topology. We then turn, in Sections5 and 6, to the scheduling algorithms best suited for pro-viding predicted service. We combine these two schedulingalgorithms in Section 7, presenting a uni�ed scheduling algo-rithm which provides both guaranteed and predicted service.The scheduling algorithm incorporates two novel ideas; thatof using FIFO service in a real-time context, and that of cor-relating the queueing delay of a packet at successive nodesin its path to reduce delay jitter. Given the current frenzyof activity in the design of real-time scheduling algorithms,we do not expect that the algorithm presented here will bethe �nal word on the matter; however, we do hope that theinsight embodied therein will be of lasting value. In partic-ular, we think that the insight underlying our design, that itis necessary to distinguish between the two basic principlesof isolation and sharing, is both fundamental and novel.In Section 8 we return to the issue of the service interface.Since the service interface will be invoked by applications,we expect that a real-time service interface will outlive anyparticular underlying network mechanism. Thus, we haveattempted in our proposal to produce an interface which is
exible enough to accommodate a wide variety of supportingmechanisms. Admission control policies are discussed brie
yin Section 9, and the support of other service qualities iscovered in Section 10.In order to build up su�cient context to meaningfullycompare our work to previously published work, we de-lay the detailed discussion of related work until Section 11.However, we wish to note here that our work borrows heav-ily from the rapidly growing literature on providing real-time service in packet networks. In particular, the works ofParekh and Gallager ([20, 19]), Jacobson and Floyd ([14]),

and Lazar, Hyman, and Paci�ci ([12, 13]) have all con-tributed to our design.Finally, in Section 12, we conclude our paper with a re-view of our results and a brief discussion of related economicissues. The Appendix contains details relating to the simu-lation results that are presented in Sections 5-7.2 Properties of Real-Time Tra�c2.1 A Class of Real-Time ApplicationsIn the discussion that follows, we focus on a particular classof real-time application which we dub play-back applications.In a play-back application, the source takes some signal,packetizes it, and then transmits it over the network. Thenetwork inevitably introduces some variation in the delay ofeach delivered packet. This variation has traditionally beencalled jitter. The receiver depacketizes the data and thenattempts to faithfully play back the signal. This is doneby bu�ering the incoming data to remove the network in-duced jitter and then replaying the signal at some designatedplay-back point. Any data that arrives before its associatedplay-back point can be used to reconstruct the signal; dataarriving after the play-back point is useless in reconstructingthe real-time signal. For the purposes of this paper, we as-sume that all such applications have su�cient bu�ering tostore all packets which arrive before the play-back point; wereturn to this point in Section 10.Not all real-time applications are play-back applications(for example, one might imagine a visualization applicationwhich merely displayed the image encoded in each packetwhenever it arrived). However, we believe the vast majorityof future real-time applications, including most video andaudio applications, will �t this paradigm. Furthermore, non-play-back applications can still use the real-time networkservice provided by our architecture, although this serviceis not speci�cally tailored to their needs.Play-back real-time applications have several service re-quirements that inform our design proposal. First, sincethere is often real-time interaction between the two endsof an application, as in a voice conversation, the applicationperformance is sensitive to the data delivery delay; in generallower delay is much preferable. Second, in order to set theplay-back point, the application needs to have some infor-mation (preferably an absolute or statistical bound) aboutthe delays that each packet will experience. Third, since alldata is bu�ered until the play-back point, the application isindi�erent as to when data is delivered as long as it arrivesbefore the play-back point3 . This turns out to be a crucialpoint, as it allows us to delay certain packets which are in nodanger of missing their play-back point in favor of packetswhich are. Fourth, these play-back applications can oftentolerate the loss of a certain fraction of packets with only aminimal distortion in the signal. Therefore, the play-backpoint need not be so delayed that absolutely every packetarrives beforehand.2.2 The Nature of DelayThe delay in the network derives from several causes. Thereis in practice a large �xed component to the delay, causedby the propagation of the packet at the speed of light, and3This is where we invoke the assumption, mentioned previously,that the receiver has su�cient bu�ers.



the delay in transmission at each switch point waiting forthe entire packet to arrive before commencing the next stageof transmission. (Cut-through networks avoid this delay bystarting transmission before receipt is complete; most packetnetworks are not cut-through.) Added to this �xed delay is avariable amount of delay related to the time that each packetspends in service queues in the switches. This variation, orjitter, is what must be bounded and minimized if adequatereal-time service is to be achieved.Queueing is a fundamental consequence of the statisticalsharing that occurs in packet networks. One way to reducejitter might be to eliminate the statistical behavior of thesources. Indeed, one misconception is that real-time sourcescannot be bursty (variable in their transmission rate), butmust transmit at a �xed invariant rate to achieve a real-timeservice. We reject this idea; allowing sources to have burstytransmission rates and to take advantage of statistical shar-ing is a major advantage of packet networks. Our approachis thus to bound and characterize the burstiness, rather thaneliminate it.The idea of statistical sharing implies that there are in-deed several sources using the bandwidth; one cannot sharealone. Our approach to real-time tra�c thus looks at theaggregation of tra�c as fundamental; the network must beshared in such a way that clients (1) get better service thanif there were no sharing (as in a circuit switched or TDMnetwork) and (2) are protected from the potentially negativee�ects of sharing (most obviously the disruption of servicecaused by sharing with a mis-behaving source that overloadsthe resource).2.3 Dealing with DelayIn order for an application to predict its level of performancewith a given quality of network service, it needs to deter-mine, to achieve satisfactory performance, what fraction ofits packets must arrive before the play-back point, and itneeds to know where to set its playback point. Thus, somebound on the delay, plus an estimate of the fraction of pack-ets missing that bound, forms the nucleus of the network'sservice speci�cation in the service interface (to be discussedmore fully in Section 8).Some real-time applications will use an a priori delaybound advertised by the network to set the play-back pointand will keep the play-back point �xed regardless of theactual delays experienced. These we dub rigid applications.For other applications, the receiver will measure the networkdelay experienced by arriving packets and then adaptivelymove the playback point to the minimal delay that still pro-duces a su�ciently low loss rate. We call such applicationsadaptive. Notice that adaptive applications will typicallyhave an earlier play-back point than rigid applications, andthus will su�er less performance degradation due to delay.This is because the client's estimate of the de facto boundon actual delay will likely be less than the a priori boundpre-computed by the network. On the other hand, sincethe adaptation process is not perfect and may occasionallyset the play-back point too early, adaptive applications willlikely experience some amount of losses.The idea of adaptive applications is not relevant to cir-cuit switched networks, which do not have jitter due toqueueing. Thus most real-time devices today, like voiceand video codecs, are not adaptive. Lack of widespreadexperience may raise the concern that adaptive applicationswill be di�cult to build. However, early experiments sug-

gest that it is actually rather easy. Video can be madeto adapt by dropping or replaying a frame as necessary,and voice can adapt imperceptibly by adjusting silent peri-ods. In fact, such adaptative approaches have been appliedto implement packetized voice applications since early 70's(citeWeinstein); the VT ([2]) and VAT ([15]) packet voiceprotocols, which are currently used to transmit voice on theInternet, are living examples of such adaptive applications4 .It is important to note that while adaptive applications canadjust to the delivered delays over some range, there aretypically limits to this adaptability; for instance, once thedelay reaches a certain level, it would become di�cult tocarry out interactive conversations.Another useful distinction between network clients is howtolerant they are to brief interruptions in service. This levelof tolerance is not just a function of the application, butalso of the end users involved. For instance, a video confer-ence allowing one surgeon to remotely assist another duringan operation will not be tolerant of any interruption of ser-vice, whereas a video conference-based family reunion mighthappily tolerate interruptions in service (as long as it wasre
ected in a cheaper service rate).We can thus characterize network clients along two axes:adaptive or rigid, and tolerant or intolerant. It is unlikelythat an intolerant network client is adaptive, since the adap-tive process will likely lead, in the event of rapidly changingnetwork conditions, to a brief interruption in service whilethe play-back point is re-adjusting. Furthermore, a tolerantclient that is rigid is merely losing the chance to improve itsdelay. Such a combination of tolerance and rigidity wouldprobably re
ect the lack of adaptive hardware and software,which we believe will soon be cheap and standard enough tobecome fairly ubiquitous. We are thus led to the predictionthat there will be two dominant classes of tra�c in the net-work: intolerant and rigid clients, and tolerant and adaptiveclients. We predict that these two classes will likely requestvery di�erent service commitments from the network. Thus,these basic considerations about delay and how clients dealwith it have produced a taxonomy of network clients thatguides the goals of our architecture.Before turning to the issue of service commitments, letus note that one of the key di�erences between real-timeapplications and the traditional datagram applications liesin the nature of the o�ered tra�c. Data tra�c is typicallysporadic and unpredictable. In contrast, real-time appli-cations often have some intrinsic packet generation processwhich is long lasting compared to the end-to-end delays ofthe individual packets. This process is a consequence of thespeci�cs of the application; for example the coding algorithmfor video, along with the nature of the image, will determinethe packet generation process. Furthermore, the character-ization of this generation process can often be closely rep-resented by some tra�c �lter (such as a token bucket tobe described later), and/or be derived from measurement.When a network has some knowledge of the tra�c load itwill have to carry, it can allocate its resources in a muchmore e�cient manner.3 Service CommitmentsClearly, for a network to make a service commitment to aparticular client, it must know beforehand some characteri-4Yet another example of an adaptive packet voice application isdescribed in Reference [5].



zation of the tra�c that will be o�ered by that client. Forthe network to reliably meet its service commitment, theclient must meet its tra�c commitment (i.e., its tra�c mustconform to the characterization it has passed to the net-work). Thus, the service commitment made to a particularclient is predicated on the tra�c commitment of that client.The question is, what else is the service commitment predi-cated on (besides the obvious requirement that the networkhardware function properly)?One kind of service commitment, which we will call guar-anteed service, depends on no other assumptions. That is,if the network hardware is functioning and the client is con-forming to its tra�c characterization, then the service com-mitment will be met. Notice that this level of commitmentdoes not require that any other network clients conform totheir tra�c commitments. Guaranteed service is appropri-ate for intolerant and rigid clients, since they need absoluteassurances about the service they receive.However, guaranteed service is not necessarily appropri-ate for tolerant and adaptive clients. Adaptive clients, byadjusting their play-back point to re
ect the delays theirpackets are currently receiving, are gambling that the net-work service in the near future will be similar to that deliv-ered in the recent past. Any violation of that assumption inthe direction of increased delays will result in a brief degra-dation in the application's performance as packets beginmissing the play-back point. The client will then readjustthe play-back point upward to re
ect the change in service,but there will necessarily be some momentary disruptionin service. This will occur even if the network is meetingits nominal service commitments (based on the bounds onthe service), because an adaptive application is typically ig-noring those a priori bounds on delay and adapting to thecurrent delivered service.Thus, as long as the application is gambling that the re-cent past is a guide to the near future, one might as wellde�ne a class of service commitment that makes the samegamble. Our second kind of service commitment is calledpredicted service. This level of commitment has two com-ponents. First, as stated above, the network commits thatif the past is a guide to the future, then the network willmeet its service characterization. This component embod-ies the fact that the network can take into account recentmeasurement on the tra�c load in guessing what kind ofservice it can deliver reliably. This is in marked contrastto the worst-case analysis that underlies the guaranteed ser-vice commitment. Second, the network attempts to deliverservice that will allow the adaptive algorithms to minimizetheir play-back points. (This is the same as saying that theservice will attempt to minimize the post facto delay bound.)Obviously, when the overall network conditions change, thequality of service must also change; the intent of the secondcomponent of the commitment is that when network con-ditions are relatively static, the network schedules packetsso that the current post facto delay bounds (which are typi-cally well under the long-term a priori bounds that are partof the service commitment) are small.Notice that predicted service has built into it very strongimplicit assumptions about the behavior of other networkclients by assuming that the network conditions will remainrelatively unchanged, but involves very few explicit assump-tions about these other network clients; i.e., their currentbehavior need not be explicitly characterized in any precisemanner. Thus, for predicted service, the network takes stepsto deliver consistent performance to the client; it avoids the

hard problem, which must be faced with guaranteed service,of trying to compute a priori what that level of deliveredservice will be.We have thus de�ned two sorts of real time tra�c, whichdi�er in terms of the service commitment they receive. Thereis a third class of tra�c that we call datagram tra�c, towhich the network makes no service commitments at all,except to promise not to delay or drop packets unnecessar-ily (this is sometimes called best e�ort service).We now have the �rst component of our architecture,the nature of the service commitment. The challenge, now,is to schedule the packet departures at each switch so thatthese commitments are kept. For the sake of clarity, we �rstconsider, in Section 4, how to schedule guaranteed tra�cin a network carrying only guaranteed tra�c. In Sections5 and 6 we then consider how to schedule predicted tra�cin a network carrying only predicted tra�c. After we haveassembled the necessary components of our scheduling algo-rithm we then, in Section 7, present our uni�ed schedulingalgorithm which simultaneously handles all three levels ofservice commitment.As we present these scheduling schemes, we also lay thegroundwork for the other key pieces of the architecture, thespeci�cs of the service interface (which must relate closelyto the details of the service commitment) and the methodto control the admission of new sources.4 Scheduling Algorithms for Guaranteed Tra�cIn this section we �rst describe a tra�c �lter and then ascheduling algorithm that together provide guaranteed ser-vice.As discussed brie
y in Section 3, a network client mustcharacterize its tra�c load to the network, so that the net-work can commit bandwidth and manage queues in a waythat realizes the service commitment. We use a particularform of tra�c characterization called a token bucket �lter.A token bucket �lter is characterized by two parameters, arate r and a depth b. One can think of the token bucketas �lling up with tokens continuously at a rate r, with bbeing its maximal depth. Every time a packet is generatedit removes p tokens from the bucket, where p is the sizeof the packet. A tra�c source conforms to a token bucket�lter (r; b) if there are always enough tokens in the bucketwhenever a packet is generated.More precisely, consider a packet generation process withti and pi denoting the generation time and size, respectively,of the i'th packet. We say that this tra�c source conformsto a token bucket �lter (r; b) of rate r and depth b if thesequence ni de�ned by n0 = b and ni = MIN [b; ni�1 +(ti � ti�1)r � pi] obeys the constraint that ni � 0 for alli. The quantities ni, if nonnegative, represent the numberof tokens residing in the bucket after the i'th packet leaves.For a given tra�c generation process, we can de�ne the non-increasing function b(r) as the minimal value such that theprocess conforms to a (r; b(r)) �lter.In recent years, several time-stamp based algorithms havebeen developed. These algorithms take as input some preas-signed apportionment of the link expressed as a set of ratesr� (where � labels the 
ows); the resulting delays dependon the bucket sizes b�(r�).One of the �rst such time-stamp algorithms was the FairQueueing algorithm introduced in Reference [4]. This al-gorithm was targeted at the traditional data service archi-



tecture, and so involved no preallocation of resources (andthus had each r� = � where � denotes the link speed).In addition, a weighted version of the Fair Queueing algo-rithm (which we refer to as WFQ), in which the r� neednot all be equal, was also brie
y described in Reference [4]5.The VirtualClock algorithm, described in References [25, 26],involves an extremely similar underlying packet schedulingalgorithm, but was expressly designed for a context whereresources were preapportioned and thus had as a fundamen-tal part of its architecture the assumption that the shares r�were arbitrary. Parekh and Gallager, in Reference [19], rein-troduce the WFQ algorithm under the name of packetizedgeneralized processor sharing (PGPS). They have proven animportant result that this algorithm, under certain condi-tions, can deliver a guaranteed quality of service ([20]). Wepresent a brief summary of the WFQ algorithm below, sincewe make use of it in our overall scheduling algorithm; seeReferences [4, 20] for more details.First, consider some set of 
ows and a set of clock ratesr�. The clock rate of a 
ow represents the relative share ofthe link bandwidth this 
ow is entitled to; more properly, itrepresents the proportion of the total link bandwidth whichthis 
ow will receive when it is active. By assigning it aclock rate r� the network commits to provide to this 
owan e�ective throughput rate no worse than (�r�)=(P� r�)where the sum in the denominator is over all currently active
ows.This formulation can be made precise in the context of a
uid 
ow model of the network, where the bits drain contin-uously out of the queue. Let t�i and p�i denote the generationtime and size, respectively, of the i'th packet arriving in the�'th 
ow. We de�ne the set of functions m�(t), which char-acterize at any time the backlog of bits which each sourcehas to send, and set m�(0) = 0. We say that a 
ow is activeat time t if m�(t) > 0; let A(t) denote the set of active 
ows.Then the dynamics of the system are determined as follows.Whenever a packet arrives, m must discontinuously increaseby the packet size: m�(t+) = m�(t�) + pi if t = t�i , wherem�(t+) and m�(t�) refer to right hand and left hand limitsof m� at t. At all other times, we know that the bits aredraining out of the queues of the active 
ows in proportionto the clock rates of the respective 
ows:@m�(t)@t = �r�P�2A(t) r� if � 2 A(t) ; @m�(t)@t = 0 if � 62 A(t)This completely characterizes the dynamics of the 
uid
ow model. Parekh and Gallager have shown the remarkableresult that, in a network with arbitrary topology, if a 
owgets the same clock rate at every switch and the sum ofthe clock rates of all the 
ows at every switch is no greaterthan the link speed, then the queueing delay of that 
ow isbounded above by b�(r�)=r�. Intuitively, this bound is thedelay that would result from an instantaneous packet burstof the token bucket size being serviced by a single link ofrate r�; the queueing delays are no worse than if the entirenetwork were replaced by a single link with a speed equalto the 
ow's clock rate r�. This result can be motivated bynoting that if the source tra�c were put through a leakybucket �lter of rate r at the edge of the network6, then the5The weighted version of Fair Queueing is mentioned on page 24of Reference [4], though not referred to by the name Weighted FairQueueing.6In a 
uid 
ow version of a leaky bucket of rate r, the bits drainout at a constant rate r and any excess is queued.


ow would not su�er any further queueing delays within thenetwork since the instantaneous service rate given to this
ow at every switch along the path would be at least r.Thus, all of the queueing delay would occur in the leakybucket �lter and, if the 
ow obeyed an (r; b) token bucket�lter, then the delay in the leaky bucket �lter would bebounded by b=r. Notice that the delay bound of a particular
ow is independent of the other 
ows' characteristics; theycan be arbitrarily badly behaved and the bound still applies.Furthermore, these bounds are strict, in that they can berealized with a set of greedy sources which keep their tokenbuckets empty.The previous paragraphs describe WFQ in the 
uid 
owapproximation. One can de�ne the packetized version of thealgorithm in a straightforward manner. De�ne ��i (t) for allt � t�i as the number of bits that have been serviced fromthe 
ow � between the times t�i and t. Associate with eachpacket the function E�i (t) = (m�(t�i )� ��i (t))=r� where wetake the right-hand limit of m; this number is the level ofbacklog ahead of the packet i in the 
ow �'s queue dividedby the 
ow's share of the link, and can be thought of as anexpected delay until departure for the last bit in the packet.The packetized version of WFQ is merely, at any time twhen the next packet to be transmitted must be chosen, toselect the packet with the minimal E�i (t). This algorithmis called a time-stamp based scheme because there is an al-ternative but equivalent formulation in which each packet isstamped with a time-stamp as it arrives and then packetsare transmitted in increasing order of time-stamps; see Ref-erences [4, 20] for details on this formulation. Parekh andGallager have shown that a bound, similar to the 
uid 
owbound, applies to this packetized algorithm as well. How-ever, the formulae for the delays in the packetized case aresigni�cantly more complicated; see Reference [20] for details.To understand the relation between the clock rate r, thebucket size b(r) and the resultant delay, consider what hap-pens to a burst of packets. The packet that receives thehighest queueing delay is the last packet of a burst. Thebound on the jitter is proportional to the size of the burstand inversely proportional to the clock rate. The means bywhich the source can improve the worst case bound is toincrease its r parameter to permit the burst to pass throughthe network more quickly.Since the bounds given in guaranteed service must beworst-case bounds (i.e. the bounds must apply for all possi-ble behaviors of the other sources), the primary function ofa scheduling algorithm designed to deliver guaranteed ser-vice is to isolate 
ows from each other, so that a 
ow canhave only a limited negative e�ect on other 
ows. The WFQscheme isolates each source from the others by providing it aspeci�ed share of the bandwidth under overload conditions.The work of Parekh and Gallager provides a way for thesource to compute the maximum queueing delay which itspackets will encounter, provided that the source restricts it-self to a (r; b) token bucket �lter. But the network's schedul-ing algorithm does not depend on this �lter. Indeed, an im-portant point about this form of guaranteed service is thatthe tra�c �lters do not play any role in packet scheduling.Given that there exists an algorithm that can deliverguaranteed service, why not deliver guaranteed service toall clients? Most bursty statistical generation processes aresuch that any r which produces a reasonably small ratiob(r)=r (so that the resulting delay bound is reasonable) ismuch greater than the average data rate of that source.Thus, if guaranteed service were the only form of real-time



service available, then the overall level of network utiliza-tion due to real-time tra�c would be well under capacity,perhaps 50% or less.One design alternative would be to assume that data-gram tra�c would comprise the rest of the tra�c, �llingup the unused capacity. While we certainly do not have aclear picture of the nature of the o�ered load in future ISPNnetworks, we think that basing the case for a scheduling al-gorithm on the expectation that the volume of datagramtra�c will �ll half the capacity of the network is, at best, agamble. Consequently, we propose to also o�er another classof real-time service, predicted service. Note that in o�eringthis service we are attempting to increase the utilization ofthe network while still meeting the service needs of real-timeclients.5 Scheduling Algorithms for Predicted ServiceWe motivate the development of our scheduling algorithmby considering the following gedanken experiment. Considera single-link network carrying some number of clients, andassume that all sources conform to some tra�c �lter suchas the token buckets described above. Furthermore, assumethat all the clients are bursty sources, and wish to mix theirtra�c so that in the aggregate they achieve a better useof bandwidth and a controlled delay. How does one bestschedule the packets to achieve low post facto delay bounds(or, equivalently, minimal play-back points)?What behavior does the WFQ algorithm induce? When-ever there is a backlog in the queue, packets leave the queueat rates proportional to their clock rates. Consider a mo-ment when all sources are transmitting uniformly at theirclock rates except for one which emits a burst of packets.The WFQ algorithm would continue to send the packetsfrom the uniform sources at their clock rates, so their pack-ets are not queued for any signi�cant time whereas the back-log of packets from the bursty source will take a long timeto drain. Thus, a burst by one source causes a sharp in-crease in the delay seen by that source, and has minimale�ects on the delays seen by the other sources. The mediandelay will be rather low, assuming the network link is notover-committed, but a burst will induce jitter directly, andmostly, a�ecting only the source that emitted the burst.WFQ provides for a great degree of isolation, so thatsources are protected from other sources' bursts. Is this thebest approach to obtaining the lowest playback point whena number of sources are sharing a link? We argue that thisisolation, while necessary for providing guaranteed service,is counterproductive for predicted service.The nature of play-back real-time applications allows thescheduling algorithm to delay all packets up to the play-backpoint without adversely a�ecting the application's perfor-mance. Thus, one can think of the play-back point as adeadline. For such problems, the standard earliest-deadline-�rst scheduling algorithm, as described in Reference [17], hasbeen proven optimal. However, in our gedanken experimentthe play-back points are not set a priori, as in the abovereference, but are rather the result of the clients adaptingto the current level of delay.Let us consider a simple example where a class of clientshave similar service desires. This implies that they are allsatis�ed with the same delay jitter; thus they all have thesame play-back point and thus the same deadline. If thedeadline for each packet is a constant o�set to the arrival

scheduling mean 99.9 %ileWFQ 3.16 53.86FIFO 3.17 34.72Table 1: The mean and 99.9'th percentile queueing delays(measured in the unit of per packet transmission time) fora sample 
ow under the WFQ and FIFO scheduling algo-rithms. The link is 83.5% utilized.time, the deadline scheduling algorithm becomes, surpris-ingly, FIFO; the packet that is closest to its deadline is theone that arrived �rst. Hyman, Lazar, and Paci�ci, in Ref-erence [13], also make this observation that FIFO is merelya special case of deadline scheduling.Consider what happens when we use the FIFO queue-ing discipline instead of WFQ. Now when a burst fromone source arrives, this burst passes through the queue ina clump while subsequent packets from the other sourcesare temporarily delayed; this latter delay, however, is muchsmaller than the delay that the bursting source would havereceived under WFQ. Thus, the play-back point need notbe moved out as far to accommodate the jitter inducedby the burst. Furthermore, the particular source produc-ing the burst is not singled out for increased jitter; all thesources share in all the jitter induced by the bursts of all thesources. Recall that when the packets are of uniform size,the total queueing delay in any time period (summed overall 
ows) is independent of the scheduling algorithm. TheFIFO algorithm splits this delay evenly, whereas the WFQalgorithm assigns the delay to the 
ows that caused the mo-mentary queueing (by sending bursts). When the delays areshared as in FIFO, in what might be called a multiplexingof bursts, the post facto jitter bounds are smaller than whenthe sources are isolated from each other as in WFQ. Thiswas exactly our goal; under the same link utilization, FIFOallows a number of sources aggregating their tra�c to obtaina lower overall delay jitter.In order to test our intuition, we have simulated bothWFQ and FIFO algorithms. The Appendix contains a com-plete description of our simulation procedure; we only presentthe results here. We consider a single link being utilized by10 
ows, each having the same statistical generation process.In Table 1 we show the mean and 99.9'th percentile queue-ing delays for a sample 
ow (the data from the various 
owsare similar) under each of the two scheduling algorithms.Note that while the mean delays are about the same forthe two algorithms, the 99.9'th percentile delays are signi�-cantly smaller under the FIFO algorithm. This con�rms ouranalysis above.The FIFO queue discipline has generally been consid-ered ine�ective for providing real-time service; in fact, ithas been shown in certain circumstances to be the worstpossible algorithm ([1]). The reason is that if one source in-jects excessive tra�c into the net, this disrupts the servicefor everyone. This assessment, however, arises from a failureto distinguish the two separate objectives of any tra�c con-trol algorithm, isolation and sharing. Isolation is the morefundamental goal; it provides guaranteed service for well-behaved clients and quarantines misbehaving sources. Butsharing, if it is performed in the context of an encompassingisolation scheme, performs the very di�erent goal of mixingtra�c from di�erent sources in a way that is bene�cial to



all; bursts are multiplexed so that the post facto jitter issmaller for everyone. The FIFO scheme is an e�ective shar-ing scheme, but it does not provide any isolation. WFQ, onthe other hand, is an e�ective method for isolation. If weorganize the tra�c into classes of clients with similar servicerequirements, we �nd that this reasoning leads to a nestedscheme in which the queuing decision is in two steps: a �rststep to insure isolation of classes, and then a particular shar-ing method within each class.FIFO is not the only interesting sharing method. An-other sharing method is priority, which has a very di�erentbehavior than FIFO. The goal of FIFO is to let every sourcein a common class share equally in the jitter. In priority,one class acquires jitter of higher priority classes, which con-sequently get much lower jitter. In one direction priority isconsidered a sharing mechanism, but in the other it is an iso-lation mechanism, i.e. lower priority tra�c can never a�ectthe performance of higher priority one.Why might a priority algorithm be of mutual bene�t?The bene�t of lower jitter is obvious; the bene�t of higherjitter would presumably be a lower cost for the service. Asource with more tolerance for jitter (or for higher overalldelay) might be very happy to obtain a cheaper service inexchange for taking the jitter of some other sources.One can think in general of scheduling algorithms as rep-resenting methods for jitter shifting, in which explicit actionsare taken to transfer the jitter among 
ows in a controlledand characterized way. One could invent a wide range ofscheduling schemes that reorder the queue in speci�c ways,as we discuss in the section on related work. They shouldall be examined from two perspectives. First, how and towhat extent do they perform isolation? Second, how and towhat extent do they provide sharing?6 Multi-Hop SharingOne of the problems with the FIFO algorithm is that ifwe generalize our gedanken experiment to include severallinks, then the jitter tends to increase dramatically with thenumber of hops, since the packet has a separate opportunityfor uncorrelated queueing delays at each hop.In fact, it is not clear that this increase in jitter needoccur. Going through more hops provides more opportuni-ties for sharing, and hence more opportunities for reducingjitter. The key is to correlate the sharing experience whicha packet has at the successive nodes in its path. We call thisscheme FIFO+. In priciple, FIFO+ is very similar to theleast slack scheduling algorithms for manufacturing systemsdiscussed in Reference [18].In FIFO+, we try to induce FIFO-style sharing (equaljitter for all sources in the aggregate class) across all the hopsalong the path to minimize jitter. We do this as follows. Foreach hop, we measure the average delay seen by packets ineach priority class at that switch. We then compute foreach packet the di�erence between its particular delay andthe class average. We add (or subtract) this di�erence toa �eld in the header of the packet, which thus accumulatesthe total o�set for this packet from the average for its class.This �eld allows each switch to compute when the packetshould have arrived if it were indeed given average service.The switch then inserts the packet in the queue in the orderas if it arrived at this expected time.To test this algorithm, we have simulated its perfor-mance on a network as shown on Figure 1. This network

has four equivalent 1Mbit/sec inter-switch links, and eachlink is shared by 10 
ows. There are, in total, 22 
ows; allof them have the same statistical generation process (de-scribed in the Appendix) but they travel di�erent networkpaths. 12 traverse only one inter-switch link, 4 traverse twointer-switch links, 4 traverse three inter-switch links, and2 traverse all four inter-switch links. Table 2 displays themean and 99.9'th percentile queueing delays for a single sam-ple 
ow for each path length (the data from the other 
owsare similar). We compare the WFQ, FIFO, and FIFO+ al-gorithms (where we have used equal clock rates in the WFQalgorithm). Note that the mean delays are comparable inall three cases. While the 99.9'th percentile delays increasewith path length for all three algorithms, the rate of growthis much smaller with the FIFO+ algorithm.As the simulation shows, the e�ect of FIFO+, as com-pared to FIFO, is to slightly increase the mean delay and jit-ter of 
ows on short paths, slightly decrease the mean delayand signi�cantly decrease the jitter of 
ows on long paths,which means that the overall delay bound goes down andthe precision of estimation goes up on long paths. When wecompare the implementation of the two schemes, they di�ersin one important way { the queue management discipline isno longer trivial (add the packet to the tail of the queue forthe class) but instead requires that the queue be orderedby deadline, where the deadline is explicitly computed bytaking the actual arrival time, adjusting this by the o�set inthe packet header to �nd the expected arrival time, and thenusing this to order the queue. This has the possibility of amore expensive processing overhead, but we believe that ef-�cient coding methods can implement this in software withthe same performance as current packet switches achieve.We have now extended our predicted service class to mul-tiple hops, using FIFO+ as an explicit means to minimizethe jitter and to obtain as much bene�t as possible fromsharing. Compare this service to the guaranteed service,where the service is speci�ed by the worst-case bounds andthe focus is on scheduling algorithms that provide isolationbetween the various 
ows. In our gedanken experiment forpredicted service, we assume that (1) adequate isolation isbeing provided by the enforcement of tra�c �lters before orat the entrance to the network, and (2) the overall networkconditions are not changing rapidly. Here, the challenge is toshare the link e�ectively in a way that minimizes the play-back point. As we have seen, FIFO is a e�ective sharingmechanism. The modi�cation of FIFO+ merely extends theconcept of sharing from sharing between 
ows at a singlehop to sharing between hops.7 Uni�ed Scheduling AlgorithmIn the previous three sections we have presented schedulingalgorithms that each handle a single kind of service com-mitment. In this section we combine these algorithms into auni�ed scheduling algorithm that handles guaranteed, pre-dicted, and datagram service.Consider a set of real-time 
ows, some requesting guaran-teed service and some requesting predicted service, and alsoa set of datagram sources. We �rst describe the schedulingalgorithm as implemented at each switch and then discusshow this �ts into our overall service architecture.The scheduling algorithm at a single switch is quite straight-forward. The basic idea is that we must isolate the tra�cof guaranteed service class from that of predicted service



Host-1 Host-2 Host-3 Host-4 Host-5

S-1 S-2 S-3 S-4 S-5Figure 1: Network topology used for data in Table 2.Path Length1 2 3 4scheduling mean 99.9 %ile mean 99.9 %ile mean 99.9 %ile mean 99.9 %ileWFQ 2.65 45.31 4.74 60.31 7.51 65.86 9.64 80.59FIFO 2.54 30.49 4.73 41.22 7.97 52.36 10.33 58.13FIFO+ 2.71 33.59 4.69 38.15 7.76 43.30 10.11 45.25Table 2: The mean and 99.9'th percentile queueing delays (measured in the unit of per packet transmission time) for foursample 
ows of di�erent path lengths under the WFQ, FIFO, and FIFO+ scheduling algorithms. The network con�gurationis shown in Figure 1. Each inter-switch link is 83.5% utilized.class, as well as isolate guaranteed 
ows from each other.Therefore we use the time-stamp based WFQ scheme as aframework into which we �t the other scheduling algorithms.Each guaranteed service client � has a separate WFQ 
owwith some clock rate r�. All of the predicted service anddatagram service tra�c is assigned to a pseudo WFQ 
ow,call it 
ow 0, with, at each link, r0 = ��P� r� where thesum is over all the guaranteed 
ows passing through thatlink. Inside this 
ow 0, there are a number of strict pri-ority classes, and within each priority class we operate theFIFO+ algorithm. Once we have assigned each predictive
ow (and also the datagram tra�c) to a priority level at eachswitch, the scheduling algorithm is completely de�ned. Wenow discuss how this algorithm �ts into our overall servicearchitecture.We have discussed the function of the FIFO+ schemeabove. What is the role of the priority classes? Rememberabove that the e�ect of priority is to shift the jitter of higherpriority class tra�c to the lower priority classes. We assigndatagram tra�c to the lowest priority class. There are Kother priority levels above the datagram priority level.At the service interface, we provide K widely spaced tar-get delay bounds Di for predicted service (at a particularswitch). The priorities are used to separate the tra�c forthe di�erent K classes. These bounds Di are not estimatesof the actual delivered delays. Rather, they are a priori up-per bounds and the network tries, through admission poli-cies, to keep queueing delays at each switch for a particularclass i well below these bounds Di. We mentioned earlierthat adaptive applications have limits to their adaptability;these bounds Di are indicative of such limits. A predictedservice 
ow is assigned a priority level at each switch (notnecessarily the same level in every switch); the a priori delaybound advertised to a predicted service 
ow is the sum of theappropriate Di along the path. The delay bound advertisedto a guaranteed 
ow is the Parekh-Gallager bound.This scheme has the problem that, since delay is additive,asking for a particular Di at a given switch does not directlymean that Di is the target delay bound for the path as a

whole. Rather, it is necessary to add up the target delaysat each hop to �nd the target upper bound for the path.We expect the true post facto bounds over a long path to besigni�cantly lower than the sum of the bounds Di at eachhop. But we suggest that, since this is an adaptive service,the network should not attempt to characterize or controlthe service to great precision, and thus should just use thesum of the Di's as the advertised bound.Consider in more detail how the priority scheme works.If the highest priority class has a momentary need for extrabandwidth due to a burst by several of its sources, it stealsthe bandwidth from the lower classes. The next class thussees as a baseline of operation the aggregate jitter of thehigher class. This gets factored together with the aggregateburstiness of this class to produce the total jitter for thesecond class. This cascades down to the datagram tra�c,which gets whatever bandwidth is leftover and su�ers fromthe accumulated jitter. As we argue later, the datagramtra�c should probably be given an average rate of at least10% or so, both to insure that it makes some progress on theaverage and to provide a reasonable pool of bandwidth forthe higher priority tra�c to borrow from during momentaryoverloads.For a lower priority class, what source of jitter will dom-inate its observed behavior: its intrinsic aggregate behavioror the jitter shifted from the higher priority classes? If thetarget goals for jitter are widely spaced (and for the pur-pose of rough estimation as we suggested above they proba-bly need be no closer than an order of magnitude) then theexported jitter from the higher priority class should be anorder of magnitude less than the intrinsic behavior of theclass, and the classes should usually operate more or lessindependently. Thus, a particular class is isolated from thelower priority classes by the priority scheduling algorithmand is in e�ect isolated from the higher priority classes be-cause their jitter will be so much smaller than that of theparticular class.We have simulated this uni�ed scheduling algorithm us-ing the same simulation con�guration as used for Table 2,



Guaranteed Service Predicted Servicetype path delay measure P-G type path delay measurelength mean 99.9 %ile max bound length mean 99.9 %ile maxPeak 4 8.07 14.41 15.99 23.53 High 4 3.06 8.20 11.13Peak 2 2.91 8.12 8.79 11.76 High 2 1.60 5.83 7.48Average 3 56.44 270.13 296.23 611.76 Low 3 19.22 104.83 148.7Average 1 36.27 206.75 247.24 588.24 Low 1 7.43 79.57 108.56Table 3: The queueing delay measurement of several sample 
ows in simulating the uni�ed scheduling algorithm. The networkcon�guration is shown in Figure 1. Each inter-switch link is utilized over 99%.that has 22 real-time 
ows with identical statistical gener-ation processes but which traverse di�erent network paths.To these 22 real-time 
ows we also added 2 datagram TCPconnections. In this simulation, 5 of the real-time 
ows areguaranteed service clients; 3 of these have a clock rate equalto their peak packet generation rate (we denote such 
owsby Guaranteed-Peak) and the other 2 have a clock rate equalto their average packet generation rate (we denote such 
owsby Guaranteed-Average). See the Appendix for details onthe statistical generation process and the values of the av-erage and peak rates. The remaining 17 real-time 
ows arepredicted service clients served by two priority classes, 7
ows are in the high priority class (we denote such 
ows byPredicted-High) and the other 10 
ows are in the low pri-ority class (we denote such 
ows by Predicted-Low). If welook at the tra�c traversing each link, it consists of one data-gram connection and 10 real-time 
ows: 2 Guaranteed-Peak,1 Guaranteed-Average, 3 Predicted-High, and 4 Predicted-Low.Sample results of the simulation are presented in Table3 (where P-G bound is the computed Parekh-Gallager delaybound). We see that all of the guaranteed service 
ows re-ceived worst-case delays that were well within the Parekh-Gallager bounds. Not surprisingly, the Guaranteed-Peak
ows experienced much lower delays than the Guaranteed-Average 
ows. Similarly, the Predicted-High 
ows expe-rienced lower delays than the Predicted-Low 
ows. Forthe given load pattern described here, the delays of thePredicted-High 
ows were lower than those of the compara-ble Guaranteed-Peak 
ows, and the delays of the Predicted-Low 
ows were lower than those of the comparable Guaranteed-Average 
ows; however, this relation between the delays ofthe two classes is an artifact of the particular load patternand is not necessarily indicative of a general pattern.Not shown in Table 3 is the performance of the data-gram tra�c which experienced a very low drop rate, around0.1%. The overall utilization of the network was over 99%,with 83.5% of this being real-time tra�c. It is important tonote that if all of the real-time 
ows had requested guaran-teed service with a clock rate equal to their peak rate, thenetwork could accomodate many fewer real-time 
ows andthe utilization due to real-time tra�c would be reduced toroughly 50%. Thus, providing predicted service allows thenetwork to operate with a higher degree of real-time tra�cthan would be allowed by a pure guaranteed service o�er-ing the same delay bounds. These results, though woefullyincomplete, are qualitatively consistent with our analysis.We are currently attempting to more fully validate ourdesign through simulation, and we hope to report on ourprogress in a subsequent publication. Note that much of thechallenge here is determining how to evaluate our proposal.

There is no widely accepted set of benchmarks for real-timeloads, and much of the novelty of our uni�ed schedulingalgorithm is our provision for predicted service, which canonly be meaningfully tested in a dynamic environment withadaptive clients.We have now completed the �rst parts of our architec-ture. We have described a model for the low-level packetforwarding algorithm, which is a sharing discipline inside anisolation discipline, and we have provided a particular ex-ample of such a scheme, which provides both of our servicecommitment models, guaranteed and predicted. The schemeprovides several predicted service classes with di�erent delaybounds, and uses a particular technique (FIFO+) to providelow jitter, and to provide a jitter bound that does not varystrongly with the number of hops in the paths.8 Service InterfaceAs a part of the de�nition of the uni�ed scheduling algo-rithm, we have also de�ned our service interface. In fact,there are two forms for the service interface, one for guar-anteed service and another for predicted service.For guaranteed service, the interface is simple: the sourceonly needs to specify the needed clock rate r�, then thenetwork guarantees this rate. The source uses its knownvalue for b�(r�) to compute its worst case queueing delay.If the delay is unsuitable, it must request a higher clockrate r�. The network does no conformance check on anyguaranteed 
ow, because the 
ow does not make any tra�ccharacterization commitment to the network.For predicted service, the service interface must charac-terize both the tra�c and the service. For the characteriza-tion of the tra�c we have the source declare the parameters(r; b) of the token bucket tra�c �lter to which it claims itstra�c will conform. Note that in the guaranteed case theclient did not need to inform the network of its bucket size b.Separately, the source must request the needed service. Thisinvolves selecting a suitable delay D and a target loss rateL the application can tolerate. The network will use thesenumbers to assign the source to an aggregate class at eachswitch for sharing purposes. Thus, for predicted service, theparameters of the service interface are the �lter rate and size(r; b) and the delay and loss characteristics (D;L).To provide predicted service, the network must also en-force the tra�c commitments made by the clients. Enforce-ment is carried out as follows. Each predicted service 
owis checked at the edge of the network (i.e., the �rst switchthe tra�c passes through) for conformance to its declaredtoken bucket �lter; nonconforming packets are dropped ortagged. This conformance check provides the necessary iso-lation that is a mendatory ticket for entering a shared world.



After that initial check, conformance is never enforced atlater switches; this is because any later violation would bedue to the scheduling policies and load dynamics of the net-work and not the generation behavior of the source.In the case of the predicted service, specifying the tokenbucket tra�c �lter also permits the network to estimate if itcan carry the new source at the requested rate and burstinessand still meet the service targets for this, and all of theexisting, 
ows. This is the function of the last part of thearchitecture, the 
ow admission control computation.9 Admission ControlWhile we stated earlier that we would not address the ne-gotiation process for the establishment of service commit-ments, we must at least address the conditions under whicha network accepts or denies a request for service, withoutnecessarily specifying the exact dynamics of that exchange.There are two criteria to apply when deciding whetheror not to admit additional 
ows into the network. The �rstadmission control criterion is that we should reserve no morethan 90% of the bandwidth for real-time tra�c, letting thedatagram tra�c have access to at least 10% of the link; whilethe numerical value, 10%, of this quota is completely ad hocand experience may suggest other values are more e�ective,we do believe that it is crucial to have such a quota. Thisquota ensures that the datagram service remains operationalat all times; having the datagram tra�c completely shut outfor arbitrarily long periods of time will likely put impossibledemands on the datagram transport layers. In addition, thedatagram quota ensures that there is enough spare capacityto accommodate sizable 
uctuations in the predicted servicetra�c. The second admission control criterion is that wewant to ensure that the addition of a 
ow does not increaseany of the predicted delays over the bounds Di.We now give an example, albeit super�cial, of how onemight make these criteria speci�c. Let �̂ denote the mea-sured post facto bound on utilization on a link due to real-time tra�c (in general, the hat symbol denotes measuredquantities), let d̂i denote the measured maximal delay ofthe tra�c in class i, and let � denote the link speed. Inthis example admission control criterion, a 
ow promisingto conform to a token bucket tra�c �lter (r; b) can be ad-mitted to priority level i if (1) r + �̂ < :9�, and (2) b <(Dj � d̂j)(�� �̂ � r) for each class j which is lower than orequal in priority to level i. For the purposes of the computa-tion in (2), a guaranteed service commitment is consideredto be higher in priority than all levels i. The �rst conditionguarantees that there is at least 10% of the link left overfor datagram tra�c. The second condition is a heuristic de-signed to ensure that the delays will not violate the boundsDj once the new 
ow is admitted even if the new 
ow dis-plays worst-case behavior. The key to making the predic-tive service commitments reliable is to choose appropriatelyconservative measures for �̂ and d̂j; these should not just beaverages but consistently conservative estimates. Knowinghow conservative to make the �̂ and d̂j may involve histor-ical knowledge of the size of 
uctuations in network tra�cand delay on various links.This example is overly sketchy, and we have yet to simu-late to see how this particular implementation of admissioncontrol would function in a dynamic network. We o�er itsolely as an illustration of the considerations involved indesigning an admission control policy. It is clear that the

viability of our proposal rests on our ability to formulatean admission control policy which will make the predictedservice class su�ciently reliable; specifying and validatingsuch an admission control policy is the focus of our currentwork.We have the following additional general comments onadmission control policies. It is not clear how precise suchan algorithm needs to be. If there is enough bandwidth tomeet most customer needs, and if only a small fraction oftra�c needs the most demanding of the predicted service,then a rough estimate may be adequate. In addition, weare o�ering a general method which involves measuring thebehavior of the existing real-time tra�c, rather than usingthe tra�c model speci�ed in the service interface, in decid-ing whether to admit new tra�c. We use the worst-casetra�c model only for the new source, which we cannot oth-erwise characterize; once the new 
ow starts running, wewill be able to measure the aggregate tra�c with the new
ow and base further admission decisions on the most recentmeasurement. This approach is important for two reasons.First, since the sources will normally operate inside theirlimits, this will give a better characterization and betterlink utilization. Second, it matches what the clients them-selves are doing, as they adapt the playback point to theobserved network tra�c. Having the network and the end-points assess the tra�c in similar ways is likely to betterproduce reasonable behavior.10 Other Service QualitiesThere are a number of other service features that have beenproposed in the context of real-time services. Here we wishto mention them, although we do not discuss exactly howto support them in the context of our scheme.One goal is that if overload causes some of the packetsfrom a source to miss their deadline, the source should beable to separate its packets into di�erent classes, to controlwhich packets get dropped. This idea can be incorporatedinto our scheme by creating several priority classes with thesame target Di. Packets tagged as \less important" go intothe lower priority class, where they will arrive just behindthe more important packets, but with higher priority thanthe classes with larger Di. It is obvious that use of priorityhere can create a range of policies.Another proposed service is that packets that are su�-ciently late should be discarded internally, rather than be-ing delivered, since in delivering them the network may usebandwidth that could have been better used to reduce thedelay of subsequent packets. The o�set carried in the packetin the FIFO+ scheme provides precisely the needed infor-mation: if a packet accumulates a very large jitter o�set, itis a target for immediate discarding. This idea has been pro-posed elsewhere ([21]) but we observe that it �ts naturallyinto the FIFO+ scheme.A third service is that packets should be bu�ered in thenetwork if they might otherwise arrive early (before the play-back point) so that the end-node need not provide the bu�er-ing or estimate the current delay. We are not convinced thatthis service is useful in general. With current memory costs,bu�ering does not seem expensive. And while it might seemnice for the network to relieve the destination equipmentfrom the need to estimate the delay, it cannot eliminate theneed for the end to adapt to a change in the delay. Theway in which the adaptation is done is application speci�c,



and must drive the decision as to when to change the actualplayback point. Once we give the destination enough con-trol to perform this act, it seems obvious that it is just assimple to have it perform the delay estimation as well.11 Related WorkThere has been a 
urry of recent work on supporting real-time tra�c in packet networks. We cannot hope to coverall of the relevant literature in this brief review; instead, wemention only a few representative references.Though the WFQ scheduling algorithm was �rst describedin Reference [4], Parekh and Gallager were the �rst to ob-serve that, when the weights are chosen appropriately andthe tra�c sources conform to token bucket �lters, the schedul-ing algorithm provides guaranteed service. WFQ is similarin spirit, though not in detail, to the Delay-EDD scheme pro-posed in Reference [7] and the MARS scheme proposed inReferences [12, 13], in that the use of a deadline for schedul-ing in Delay-EDD and MARS are analogous to the virtualdeparture time-stamps used in WFQ. However, the algo-rithms used to compute the time-stamps/deadlines are quitedi�erent in the three algorithms. Furthermore, the algo-rithms use rather di�erent tra�c �lters to provide bounds.Delay-EDD uses peak-rate limits (and a condition on theaverage rate) whereas WFQ uses token buckets to provideguaranteed bounds. MARS has no explicit tra�c �lters anddoes not provide guaranteed bounds (i.e., no bounds that areindependent of the other sources' behavior); rather, MARShas been shown through simulation with a particular set ofstatistical sources to obey certain post facto bounds.WFQ, Delay-EDD, and MARS are work-conserving schedul-ing algorithms, in that the link is never left idle if there arepackets in the queue. Several non-work-conserving schedul-ing algorithms have been proposed; for example, Stop-and-Go queueing ([8, 9]), Hierarchical Round Robin ([16]), andJitter-EDD ([22]). All of these bear a super�cial similarityto WFQ in that packets are scheduled according to somedeadline or frame; the di�erence is that the packets are notallowed to leave early. These algorithms typically deliverhigher average delays in return for lower jitter. See the re-view studies [24, 27] for a more detailed comparison of theseschemes.The Jitter-EDD ([6, 22]) algorithm make use of a de-lay �eld in the packet header to inform scheduling deci-sions, much like the FIFO+ algorithm. Also, we should notethat the MARS scheduling algorithm uses FIFO schedulingwithin a class of aggregated tra�c in a fashion very similarto our use of FIFO within each predicted service class. Fur-thermore, Reference [13] makes the same observation thatdeadline scheduling in a homogeneous class leads to FIFO.Reference [12] also observed that strict priority does not per-mit as many sources to share a link as a scheme that moreactively manages jitter shifting. This work thus representsan example of queue management to increase link loading,as opposed to expanded service o�erings.The general architecture of most of the proposals in theliterature, with Delay-EDD, Jitter-EDD, and HRR beingexamples, focus primarily on the delivery of what we havecalled guaranteed service to real-time tra�c (with datagramtra�c comprising the rest of the network load). Thereforethe designs of the scheduling algorithms have been mainlyfocused on performing isolation among 
ows, with MARSbeing an exception. MARS promotes sharing within a tra�c

class by FIFO, and among di�erent classes by a somewhatmore complex scheme. Due to lack of isolation, however,MARS does not provide guaranteed service. The MARSalgorithm, as well as the Statistical-EDD ([7]), attempt toachieve statistical bounds, but these bounds are still com-puted a priori (either through analytical approximation orthrough the simulation of a particular statistical source).There is implicit in these proposals the assumption that allreal-time network clients are, in our taxonomy, intolerantand rigid. While the worst-case guaranteed bounds deliv-ered by these mechanisms are appropriate for intolerant andrigid clients, we have argued that there will likely be manyreal-time clients who are both tolerant and adaptive.There is only one other general architecture that has, asone of its goals, the delivery of service more appropriate forthese tolerant and adaptive clients (and which we have calledpredicted service); this is an unpublished scheme due to Ja-cobson and Floyd which is currently being simulated andimplemented. Their work shares with our predicted servicemechanism the philosophy of measuring the current o�eredload and delivered service in order to decide if new servicerequests should be granted. Furthermore, their scheme alsoinvolves the use of priorities as a combine sharing/isolationmechanism. In contrast to our scheme, their scheme usesenforcement of tra�c �lters at every switch as an additionalform of isolation, and they use round-robin instead of FIFOwithin a given priority level7 . Moreover, there is no provi-sion for guaranteed service in their mechanism.References [10, 11] present admission control policies in-volving the concept of equivalent capacity and then discusstra�c �lters (those references use the term access controls)related to those admission control policies. While much ofthe work is analytical, they also raise the possibility of usingmeasurements of current network conditions to inform thevarious control policies.12 ConclusionThis paper contains two contributions: an architecture anda mechanism. Our architecture is perhaps the more funda-mental piece, in that it de�nes the problem and provides aframework for comparing various mechanistic alternatives.The main novelty of our architecture, which arose from theobservation that many real-time applications can be madeadaptive, is the explicit provision for two di�erent kinds ofservice commitments. The guaranteed class of service isthe traditional real-time service that is discussed in much ofthe literature. Guaranteed service is based on characteriza-tion of source behavior that then leads to static worst-casebounds. The predicted class of service, which is designed foradaptive and tolerant real-time clients, is explicitely speltout the �rst time in published literature. It replaces traf-�c characterization with measurement in network admissioncontrol. It also suggests applications replace static boundswith adaptation in setting the play-back point. We con-jecture that with predictive service and adaptive clients wecan achieve both higher link utilizations and superior appli-cation performance (because the play-back points will be atthe de facto bounds, not the a priori worst-case bounds).7More speci�cally, they combine the tra�c in each priority levelinto some number of aggregate groups, and do FIFO within eachgroup (they use the term class, but in this paper we have used thatterm with a di�erent meaning) and round-robin among the groups.The enforcement of tra�c �lters mentioned above is applied to eachgroup.



Our mechanism is both an existence proof that our ar-chitecture can be realized, and perhaps a useful artifact inits own right. The mechanism's scheduling algorithms arebuilt around the recognition that the principles of isolationand sharing are distinct and both play important roles whensources are bursty and bandwidth is limited.Isolation is fundamental and mandatory for any tra�ccontrol algorithm. The network cannot make any commit-ments if it cannot prevent the unexpected behavior of onesource from disrupting others. Sharing is important but notfundamental. If bandwidth were plentiful, e�ective behaviorcould be obtained by allocating to each source its peak rate;in this case sharing need not be considered. Note, however,that plentiful bandwidth does not eliminate the need for iso-lation, as we still need to ensure that each source does notuse more than its allocated share of the bandwidth. Thus,careful attention to sharing arises only when bandwidth islimited. In environments like LANs, it may be more cost-e�ective to over-provision than to implement intricate shar-ing algorithms. One should therefore embed sharing intothe architecture only with caution.We have proposed a particular scheme for sharing, whichseems general enough that we propose that the control �eld(the jitter o�set) be de�ned as part of the packet header.But we note that, if a subnetwork naturally produces verylow jitters, it could just ignore the �eld and operate in somesimple mode like FIFO. When a subnetwork has these verylow natural jitters, it will not have enough queueing to re-move most of the accumulated jitter anyway, and the errorintroduced by ignoring the �eld should be minor. Thus oursharing proposal is half architecture and half engineeringoptimization.We conclude with one last observation: pricing must be abasic part of any complete ISPN architecture. If all servicesare free, there is no incentive to request less than the bestservice the network can provide, which will not produce ef-fective utilization of the network's resources (see Reference[3] for a discussion of these issues). The sharing model inexisting datagram networks deals with overload by givingeveryone a smaller share; the equivalent in real-time ser-vices would be to refuse most requests most of the time,which would be very unsatisfactory. Prices must be intro-duced so that some clients will request higher jitter servicebecause of its lower cost. Therefore, real-time services mustbe deployed along with some means for accounting.It is exactly this price discrimination that will make thepredicted service class viable. Certainly predicted service isless reliable than guaranteed service and, in the absence ofany other incentive, network clients would insist on guaran-teed service and the network would operate at low levels ofutilization and, presumably, high prices. However, if one canensure that the reliability of predicted service is su�cientlyhigh and the price su�ciently low, many network clients willprefer to use the predicted service. This will allow ISPN'sto operate at a much higher level of utilization, which thenallows the costs to be spread among a much larger user pop-ulation.13 AcknowledgmentsThis work is an attempt to clarify some ideas which were,and, to some extent, remain somewhat hazy and elusive.Any progress we have made is the result of our numerousdiscussions with colleagues who, through either vigorous dis-

agreement or constructive agreement, have helped us arriveat this point. In particular, we would like to thank J. Davin,S. Deering, D. Estrin, S. Floyd, A. Heybey, V. Jacobson, A.Parekh, K. Sollins, and J. Wroclawski.14 AppendixIn our simulations, we use a network simulator written byone of us (LZ) and used in a number of previous simula-tion studies ([3, 25, 27]). The sources of real-time tra�c aretwo-state Markov processes. In each burst period, a geomet-rically distributed random number of packets are generatedat some peak rate P ; B is the average size of this burst.After the burst has been generated, the source remains idlefor some exponentially distributed random time period; Idenotes the average length of an idle period. The averagerate of packet generation A is given byA�1 = IB + 1PIn all the simulations mentioned in this paper, we choseB = 5 and set P = 2A (implying that I = B=2A), so thatthe peak rate was double the average rate. Therefore, thesource is characterized by a single number A. Each tra�csource was then subjected to an (A; 50) token bucket �lter(50 is the size of the token bucket) and any nonconformingpackets were dropped at the source; in our simulations about2% of the packets were dropped, so the true average rate wasaround :98A.In the networks we simulate, each host is connected tothe switch by an in�nitely fast link. All inter-switch linkshave bandwidths of 1 Mbit/sec, all switches have bu�erswhich can hold 200 packets, and all packets are 1000 bits.All the queueing delay measurements are shown in units ofper packet transmission time (1msec) and all data is takenfrom simulations covering 10 minutes of simulated time.For the data in Table 1, we simulated a single-link net-work; there were 10 
ows sharing the link, and the value ofA was 85 packets/sec for all 
ows. The data in Table 2 isbased on the con�guration in Figure 1 which has 5 switches,each attached to a host, and four inter-switch links. Thereare 22 
ows, with each host being the source and/or receiverof several 
ows, and all of the network tra�c travelling inthe same direction. Each inter-switch link was shared by 10
ows. There were 12 
ows of path length one, 4 
ows ofpath length two, 4 
ows of path length three, and 2 
ows ofpath length four. The value of A was 85 packets/sec for all
ows.References[1] R. Chipalkatti, J. Kurose, and D. Towsley. SchedulingPolicies for Real-Time and Non-Real-Time Tra�c in aStatistical Multiplexer, In Proceedings of GlobeCom'89, pp 774-783, 1989.[2] S. Casner private communication, 1992.[3] R. Cocchi, D. Estrin, S. Shenker, and L. Zhang. A Studyof Priority Pricing in Multiple Service Class Networks,In Proceedings of SIGCOMM '91, pp 123-130, 1991.[4] A. Demers, S. Keshav, and S. Shenker. Analysis andSimulation of a Fair Queueing Algorithm, In Journalof Internetworking: Research and Experience, 1, pp.3-26, 1990. Also in Proc. ACM SIGCOMM '89, pp 3-12.



[5] J. DeTreville and D. Sincoskie. A Distributed Experi-mental Communications System, In IEEE JSAC, Vol.1, No. 6, pp 1070-1075, December 1983.[6] D. Ferrari. Distributed Delay Jitter Control in Packet-Switching Internetworks, preprint, 1991.[7] D. Ferrari and D. Verma. A Scheme for Real-TimeChannel Establishment in Wide-Area Networks, InIEEE JSAC, Vol. 8, No. 4, pp 368-379, April 1990.[8] S. J. Golestani. A Stop and Go Queueing Frameworkfor Congestion Management, In Proceedings of SIG-COMM '90, pp 8-18, 1990.[9] S. J. Golestani. Duration-Limited Statistical Multiplex-ing of Delay Sensitive Tra�c in Packet Networks, InProceedings of INFOCOM '91, 1991.[10] R. Gu�erin and L. G�un. A Uni�ed Approach to Band-width Allocation and Access Control in Fast Packet-Switched Networks, To appear in Proceedings of IN-FOCOM '92.[11] R. Gu�erin, H. Ahmadi, and M. Naghshineh. EquivalentCapacity and Its Application to Bandwidth Allocationin High-Speed Networks, In IEEE JSAC, Vol. 9, No. 9,pp 968-981, September 1991.[12] J. Hyman and A. Lazar. MARS: The Magnet II Real-Time Scheduling Algorithm, In Proceedings of SIG-COMM '91, pp 285-293, 1991.[13] J. Hyman, A. Lazar, and G. Paci�ci. Real-TimeScheduling with Quality of Service Constraints, InIEEE JSAC, Vol. 9, No. 9, pp 1052-1063, September1991.[14] V. Jacobson and S. Floyd private communication, 1991.[15] V. Jacobson private communication, 1991.[16] C. Kalmanek, H. Kanakia, and S. Keshav. Rate Con-trolled Servers for Very High-Speed Networks, In Pro-ceedings of GlobeCom '90, pp 300.3.1-300.3.9, 1990.[17] C. Liu and J. Layland. Scheduling Algorithms for Mul-tiprogramming in a Hard Real Time Environment, InJournal of ACM, 20, pp. 46-61, 1973.[18] S. Lu and P. R. Kumar. Distributed Scheduling Basedon Due Dates and Bu�er Priorities, In IEEE Transac-tions on Automatic Control, 36, pp 1406-1416, 1991.[19] A. Parekh and R. Gallager. A Generalized ProcessorSharing Approach to Flow Control- The Single NodeCase, In Technical Report LIDS-TR-2040, Labo-ratory for Information and Decision Systems, Mas-sachusetts Institute of Technology, 1991.[20] A. Parekh. A Generalized Processor Sharing Approachto Flow Control in Integrated Services Networks, InTechnical Report LIDS-TR-2089, Laboratory for In-formation and Decision Systems, Massachusetts Insti-tute of Technology, 1992.[21] H. Schulzrinne, J. Kurose, and D. Towsley. Conges-tion Control for Real-Time Tra�c, In Proceedings ofINFOCOM '90.

[22] D. Verma, H. Zhang, and D. Ferrari. Delay Jitter Con-trol for Real-Time Communication in a Packet Switch-ing Network, In Proceedings of TriCom '91, pp 35-43,1991.[23] C. Weinstein and J. Forgie. Experience with SpeechCommunication in Packet Networks, In IEEE JSAC,Vol. 1, No. 6, pp 963-980, December 1983.[24] H. Zhang and S. Keshav. Comparison of Rate-BasedService Disciplines, In Proceedings of SIGCOMM'91, pp 113-121, 1991.[25] L. Zhang. A New Architecture for Packet SwitchingNetwork Protocols, In Technical Report LCS-TR-455,Laboratory for Computer Science, Massachusetts Insti-tute of Technology, 1989.[26] L. Zhang. VirtualClock: A New Tra�c Control Algo-rithm for Packet Switching Networks, In ACM Trans-actions on Computer Systems, Vol. 9, No. 2, pp 101-124, May 1991. Also in Proc. ACM SIGCOMM '90, pp19-29.[27] L. Zhang. A Comparison of Tra�c Control Algorithmsfor High-Speed Networks, In 2nd Annual Workshopon Very High Speed Networks, 1991.


