Distributed Computations
MapReduce

adapted from Jeff Dean’s slides
What we’ve learnt so far

• Basic distributed systems concepts
 – Consistency (sequential, eventual)
 – Fault tolerance (recoverability, availability)

• What are distributed systems good for?
 – Better fault tolerance
 • Better security?
 – Increased storage/serving capacity
 • Storage systems, email clusters
 – Parallel (distributed) computation (Today’s topic)
Why distributed computations?

• How long to sort 1 TB on one computer?
 – One computer can read ~30MB from disk
 – Takes ~2 days!!
• Google indexes 20 billion+ web pages
 – 20 * 10^9 pages * 20KB/page = 400 TB
• Large Hadron Collider is expected to produce 15 PB every year!
Solution: use many nodes!

- Cluster computing
 - Hundreds or thousands of PCs connected by high speed LANs
- Grid computing
 - Hundreds of supercomputers connected by high speed net
- 1000 nodes potentially give 1000X speedup
Distributed computations are difficult to program

- Sending data to/from nodes
- Coordinating among nodes
- Recovering from node failure
- Optimizing for locality
- Debugging

Same for all problems
MapReduce

• A programming model for large-scale computations
 – Process large amounts of input, produce output
 – No side-effects or persistent state (unlike file system)

• MapReduce is implemented as a runtime library:
 – automatic parallelization
 – load balancing
 – locality optimization
 – handling of machine failures
MapReduce design

• Input data is partitioned into M splits
• **Map**: extract information on each split
 – Each Map produces R partitions
• **Shuffle and sort**
 – Bring M partitions to the same reducer
• **Reduce**: aggregate, summarize, filter or transform
• Output is in R result files
More specifically...

- Programmer specifies two methods:
 - `map(k, v) \rightarrow \langle k', v'\rangle^*`
 - `reduce(k', \langle v'\rangle^*) \rightarrow \langle k', v'\rangle^*`

- All `v'` with same `k'` are reduced together, in order.

- Usually also specify:
 - `partition(k', \text{total partitions}) \rightarrow \text{partition for } k'$
 - often a simple hash of the key
 - allows reduce operations for different `k'` to be parallelized
Example: Count word frequencies in web pages

• Input is files with one doc per record
• **Map** parses documents into words
 – key = document URL
 – value = document contents
• Output of map:

```
“doc1”, “to be or not to be”

“to”, “1”
“be”, “1”
“or”, “1”
...
```
Example: word frequencies

- **Reduce**: computes sum for a key

```
key = "be"
values = "1", "1"
```

```
key = "not"
values = "1"
```

```
key = "or"
values = "1"
```

```
key = "to"
values = "1", "1"
```

- **Output of reduce saved**

```
"be", "2"
"not", "1"
"or", "1"
"to", "2"
```
Example: Pseudo-code

Map(String input_key, String input_value):
 //input_key: document name
 //input_value: document contents
 for each word w in input_values:
 EmitIntermediate(w, "1");

Reduce(String key, Iterator intermediate_values):
 //key: a word, same for input and output
 //intermediate_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));
MapReduce is widely applicable

• Distributed grep
• Document clustering
• Web link graph reversal
• Detecting approx. duplicate web pages
• …
MapReduce implementation

- Input data is partitioned into M splits
- **Map**: extract information on each split
 - Each Map produces R partitions
- **Shuffle and sort**
 - Bring M partitions to the same reducer
- **Reduce**: aggregate, summarize, filter or transform
- Output is in R result files
MapReduce scheduling

• One master, many workers
 – Input data split into M map tasks (e.g. 64 MB)
 – R reduce tasks
 – Tasks are assigned to workers dynamically
 – Often: $M=200,000$; $R=4,000$; workers=2,000
MapReduce scheduling

• Master assigns a map task to a free worker
 – Prefers “close-by” workers when assigning task
 – Worker reads task input (often from local disk!)
 – Worker produces R local files containing intermediate k/v pairs

• Master assigns a reduce task to a free worker
 – Worker reads intermediate k/v pairs from map workers
 – Worker sorts & applies user’s Reduce op to produce the output
WordCount Internals

• Input data is split into M map jobs
• Each map job generates in R local partitions

"doc1", "to be or not to be"

"doc234", "do not be silly"
WordCount Internals

- Shuffle brings same partitions to same reducer
WordCount Internals

- Reduce aggregates sorted key values pairs

```
"do", "1"
"to", "1", "1"
```

```
"do", "1"
"to", "2"
```

```
"be", "1", "1"
```

```
"be", "2"
```

```
"not", "1", "1"
"or", "1"
```

```
"not", "2"
"or", "1"
```
The importance of partition function

- \texttt{partition}(k', \text{total partitions}) -> partition for k'
 - e.g. \texttt{hash(k')} \% R
- What is the partition function for sort?
Load Balance and Pipelining

• Fine granularity tasks: many more map tasks than machines
 – Minimizes time for fault recovery
 – Can pipeline shuffling with map execution

<table>
<thead>
<tr>
<th>Process</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Program</td>
<td>MapReduce() ... wait ...</td>
</tr>
<tr>
<td>Master</td>
<td>Assign tasks to worker machines...</td>
</tr>
<tr>
<td>Worker 1</td>
<td>Map 1 Map 3</td>
</tr>
<tr>
<td>Worker 2</td>
<td>Map 2</td>
</tr>
<tr>
<td>Worker 3</td>
<td>Read 1.1 Read 1.3 Read 1.2 Reduce 1</td>
</tr>
<tr>
<td>Worker 4</td>
<td>Read 2.1 Read 2.2 Read 2.3 Reduce 2</td>
</tr>
</tbody>
</table>
Fault tolerance via re-execution

On worker failure:
• Re-execute completed and in-progress map tasks
• Re-execute in progress reduce tasks
• Task completion committed through master

On master failure:
• State is checkpointed to GFS: new master recovers & continues
Avoid straggler using backup tasks

- Slow workers significantly lengthen completion time
 - Other jobs consuming resources on machine
 - Bad disks with soft errors transfer data very slowly
 - Weird things: processor caches disabled (!!)
 - An unusually large reduce partition?

- Solution: Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"

- Effect: Dramatically shortens job completion time
MapReduce Sort Performance

• 1TB (100-byte record) data to be sorted
• 1700 machines
• M=15000 R=4000
MapReduce Sort Performance

When can shuffle start?

When can reduce start?