
Computer Science Department

New York University

G22.3033-001 Distributed Systems: Fall 2009

Quiz I

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you finda question ambiguous, be sure
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

I (xx/25) II (xx/10) III (xx/25) IV (xx/20) V (xx/10) Total (xx/90)

Name:

1

I Remote Procedure Call

Ben Bitdiddle believes that at-most-once RPC is not necessary for implementing the extent service.Ben uses
the naive RPC library in Lab 1 with retransmission enabled, but without all the machinary that implements
at-most-once execution. He executes this following sequence of code to store and retrieve the extent with
keyeid: (You should assume there is only one yfsclient active in the system.)

//cl is the rpcc object for communicating with the extent server
ret = cl->call(extent_protocol::put,eid,"aaa",r);
assert(ret == extent_protocol::OK);
ret = cl->call(extent_protocol::put,eid,"bbb",r);
assert(ret == extent_protocol::OK);
ret = cl->call(extent_protocol::get,eid,buf);
assert(ret == extent_protocol::OK);
cout << buf << "\n";

1. [2 points]: What is theexpected content ofbuf at the end of the above sequence of code? (You
can assume the sequence of code is the only RPC client active in the system.)

2. [8 points]: What are the potentialunexpected contents ofbuf? (Recall that the network may
lose, duplicate or reorder packets. Furthermore, the naiveRPC library simply retransmits any request
for which it has not received any reply.) Draw a timing diagram to explain each unexpected content
of buf. (Your timing diagram should contain a time line for both theclient and the server as well as
all the messages exchanged between them.) Can these unexpected outcomes occur with a RPC library
that implements at-most-once delivery? Why?

2

Ben proposes to implement at-most-once RPC by having the RPCserver keep an in-memoryreplay buffer
(replaybuf). In particular, each RPC client generates a random 64-bit number as the RPC request identi-
fier. Since the RPC identifier space is fairly large (64-bit),we can assume that the identifiers generated by all
RPC clients are unique. The RPC server remembers each RPC request that it has seen in thereplaybuf.
If a received RPC request is already in thereplaybuf, then the RPC server treats it as a duplicate re-
quest. In order to prevent thereplaybuf from growing without bound, Ben also removes all entries that
are present in thereplaybuf for longer thant seconds based on thefirst seen field. Ben’s RPC
client implementation is the same as his Lab1’s naive implementation with retransmission enabled. The
pseudocode for his rpc server implementation is as follows (locking is omitted, but you should assume Ben
performs locking correctly):

struct rpc_entry {
struct timeval first_seen;
bool rep_present;
marshall rep;
rpc_entry() {
gettimeofday(&first_seen, NULL);
rep_present = false;

}
};
void rpcs::dispatch(...)
{

...
//replaybuf is a hash map of rpc_entry
//reqid is the 64-bit identifier associated with the RPC request
if (replaybuf.find(reqid) != replaybuf.end()) { //replaybuf contains reqid
if (replaybuf[repid].rep_present) {

return replaybuf[repid].rep to the RPC client
}else{

do nothing
}

}else {
replaybuf[repid] = rpc_entry();
execute the corresponding RPC handler
add reply to replaybuf[repid].rep, set replaybuf[repid].rep_present to true

}
}

//executed periodicaly in a separate thread
void rpcs::expiretimer(...)
{

foreach repid in replaybuf {
if ((now - replaybuf[repid].first_seen) > t)
remove repid entry from replaybuf

}
}

3

3. [5 points]: Does Ben’s RPC implementation always guanrantee at-most-once execution? If your
answer is no, please give concrete examples.

4

4. [10 points]: Suppose the amount of time it takes the network to deliver a packet in one way is
bounded byδ seconds. Furthermore, assume the clock drift of between anypair of arbitary machines
is at mostǫ seconds. In other words, if machine M1 observes thatx1 seconds have passed based on
its local clock, then any other machine (e.g. M2) will observe thatx2 seconds have passed according
to M2’s local clock such thatx1 − ǫ ≤ x2 ≤ x1 + ǫ. Under these two assumptions, describe
how Ben’s replaybuf-based RPC library can be made to guarantee at-most-once delivery in the face
of lost, reordered, duplicate packetsand client or server failures. (Your solution should still have
retransmissions to deal with occasional losses and it should avoid writing to disk).

5

II Threads and mutexes

Ben Bitdiddle implements his Lab 1 lock server as follows:

1: int
2: lock_server::acquirereq(string lname, int &r) //RPC handler
3: {
4: pthread_mutex_lock(&server_mutex);
5: lock *l = locks[lname]; //assume lname already exists
6: if (l->state != FREE)
7: pthread_cond_wait(&server_cond, &server_mutex);
8: l->state = LOCKED;
9: pthread_mutex_unlock(&server_mutex);
10: return lock_protocol::OK;
11:}
12: int
13: lock_server::releasereq(string lname, int &r)
14: {
15: pthread_mutex_lock(&server_mutex);
16: lock *l = locks[lname];
17: l->state = FREE;
18: pthread_mutex_unlock(&server_mutex);
19: pthread_cond_broadcast(&server_cond);
20: return lock_protocol::OK;
21: }

5. [5 points]: Ben finds the his lockserver can grant the same lock to multiple clients simultaneously.
Identify and correct his mistakes. (You may directly modifyBen’s code fragments. Please write
correct code.)

6. [5 points]: In releasereq, can Ben move line 19 to be in front of line 15? Explain.

6

III Crash Recovery

Ben Bitdiddle decides to store the content of his extentserver on the local ext3 file system of the ex-
tent server. (Recall that the ext3 file system implements a redo logging scheme like that in Cedar, i.e.
the ext3 file system logs the modified state for each file systemmeta-data operation and periodically flushes
the log to disk.) Ben’s RPC handlers for the extentserver are as follows:

int extent_server:::put(extent_protocol::extentid_t id, std::string buf, int &)
{

//id2filename(id) converts the extent id into a unique filename deterministically.
string f = id2filename(id);
int fd = open(f.c_str(), O_CREAT|O_TRUNC|O_WRONLY);
if (fd < 0) return extent_protocol:IOERR;
int r = write(fd, buf.c_str(),buf.size());
close(fd);
if (r >= 0)
return extent_protocol::OK;

else
return extent_protocol::IOERR;

}

int extent_server::get(extent_protocol::extentid_t id, std::string &buf)
{

string f = id2filename(id);
int fd = open(f.c_str(), O_RDONLY);
if (fd < 0) return extent_protocol::NOENT;
char *p = new char[MAX_EXTENT_SIZE];
int n = read(fd, p, MAX_EXTENT_SIZE);
if (n >= 0) {
buf = string(p, n);
return extent_protocol::OK;

}else{
return extent_protocol::IOERR;

}
}

7

7. [10 points]: Ben uses his yfsclient to create two empty files named ”aaa” and ”bbb” one after
another in the root directory. Suppose the extentserver process crashes in the middle of creating
”bbb” (and after the successful completion of creating ”aaa”). When Ben restarts his extentserver,
what are the possible contents of his yfs root directory uponrestarting the extentserver? Explain.
(You should assume that there is only one yfsclient active in the system for all questions in this
section.)

8

8. [10 points]: Frustrated by the anomalies seen in the crash recovery of filecreations, Ben asks
Alyssa Hacker for help. Alyssa remembers that the local ext3file system operationrename(const
char *oldpath, const char *newpath) is an atomic operation, i.e. if failure occurs in
the middle of this operation, the rename operation appears to either have happened or not at all upon
recovery. Perform Alyssa’s fix on Ben’s code to ensure that Ben’s yfs can recover correctly during the
extentserver failure of creation operations. You can directly write on Ben code in the previous page.

9. [5 points]: Does Alyssa’s fix ensure that Ben’s yfs can always recover correctly during the failure
of the extentserver process during arbitary yfs operations? Explain.

9

IV Consistency

Ben Bitdiddle plans to replicate his extent service in Lab 4 to include two servers: X and Y. His new
extentclient implementation stores extents at both servers and reads extents from either X or Y at random.
Other than extentclient, Ben keeps his Lab4 solution unchanged (Recall that in Lab4, Ben has enabled
locking to cope with concurrent accesses to the file system state). The relevant changes in Ben’s yfsclient
to enable replication are as follows:

extent_protocol::status
extent_client::put(extent_protocol::extentid_t eid, std::string buf)
{

extent_protocol::status ret = extent_protocol::OK;
int r;
//cl_X is the rpcc client bound to server X
ret = cl_X->call(extent_protocol::put, eid, buf, r);
//cl_Y is the rpcc client bound to server Y
ret = cl_Y->call(extent_protocol::put, eid, buf, r);
return ret;

}

extent_protocol::status
extent_client::get(extent_protocol::extentid_t eid, std::string &buf)
{

extent_protocol::status ret = extent_protocol::OK;
if (rand() % 2 == 0) { //randomly reads from X or Y
ret = cl_X->call(extent_protocol::get, eid, buf);

}else{
ret = cl_Y->call(extent_protocol::get, eid, buf);

}
return ret;

}

10. [10 points]: Does Ben’s replicated extent service provide sequential consistency? If your
answer is no, give an example scenario involving yfs file system operations that cannot happen with a
sequentially consistent extent service but could happen when using Ben’s extent service and explain.

10

Ben decides to tweak his implementation again so that all themodifications are sent to server X. Server X
stores the extent and further forwards it to server Y. The extent client still reads extent from either server X
or Y at random. The new changes in Ben’s code are as follows.

extent_protocol::status
extent_client::put(extent_protocol::extentid_t eid, std::string buf)
{

extent_protocol::status ret = extent_protocol::OK;
int r;
ret = cl_X->call(extent_protocol::put, eid, buf, r);
return ret;

}

extent_protocol::status
extent_client::get(extent_protocol::extentid_t eid, std::string &buf)
{

extent_protocol::status ret = extent_protocol::OK;
if (rand() % 2 == 0) { //randomly reads from X or Y
ret = cl_X->call(extent_protocol::get, eid, buf);

}else{
ret = cl_Y->call(extent_protocol::get, eid, buf);

}
return ret;

}

//the RPC handler for extent_server
int
extent_server::put(extent_protocol::extentid_t eid, string buf, int &r)
{

int ret = extent_protocol::OK;
pthread_mutex_lock(&extent_server_lock);

in_memory_extents[id] = buf;
if (me == "X") //if I am server X, forward the put request to server Y
ret = cl_Y->call(extent_protocol::put, eid, buf, r);

pthread_mutex_unlock(&extent_server_lock);
return ret;

}

11. [5 points]: Does Ben’s new extent service achieve sequential consistency in the context of his
yfs implementation (using a lock server)? If your answer is no, explain with an example.

11

12. [5 points]: If Ben intends to use his extent service as a generic key-value store (i.e. using it
without an external lock server), does his key-value store implement sequential consistency? Explain.
If your answer is no, explain with an example.

12

V G22.3033-001

13. [5 points]: Describe the most memorable error you have made so far in one of the labs. (Provide
enough detail so that we can understand your answer.)

We would like to hear your opinions about the class so far, so please answer the following two questions.

14. [3 points]: What is the best aspect of this class?

15. [2 points]: What is the worst aspect of this class?

End of Quiz I

13

