Computer Science Department

New York University

G22.3033-001 Distributed Systems: Fall 2009

Quiz |

Some questions may be much harder than others. Read themoaifjh first and attack them jin
the order that allows you to make the most progress. If youdimggiestion ambiguous, be suire
to write down any assumptions you make. Be neat. If we caretstand your answer, we can'’t
give you credit!

THISISAN OPEN BOOK, OPEN NOTESQUIZ.

All problems are open-ended questions. In order to receiditcyou must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

Name:

| (xx/25)

Il (xx/10)

I (xx/25) | IV (xx/20) | V (xx/10) | Total (xx/90)

| RemoteProcedure Call

Ben Bitdiddle believes that at-most-once RPC is not necg$saimplementing the extent servicBen uses
the naive RPC library in Lab 1 with retransmission enabled, but without all the machinary that implements
at-most-once execution. He executes this following sequence of code to store anigvetthe extent with
keyei d: (You should assume there is only one_gfgent active in the system.)

/1cl is the rpcc object for communicating with the extent _server
ret = cl->call (extent _protocol::put,eid, "aaa",r);

assert(ret == extent_protocol::);

ret = cl->call (extent_protocol::put,eid, "bbb",r);
assert(ret == extent_protocol:: K);

ret = cl->call (extent_protocol::get,eid, buf);
assert(ret == extent_protocol::);

cout << buf << "\n";

1. [2 points]: What is theexpected content ofouf at the end of the above sequence of code? (You
can assume the sequence of code is the only RPC client attilie system.)

2. [8 points]: What are the potentialnexpected contents obuf ? (Recall that the network may

lose, duplicate or reorder packets. Furthermore, the rRIRE€ library simply retransmits any request
for which it has not received any reply.) Draw a timing diagreo explain each unexpected content
of buf . (Your timing diagram should contain a time line for both thient and the server as well as
all the messages exchanged between them.) Can these ueekpetcomes occur with a RPC library
that implements at-most-once delivery? Why?

Ben proposes to implement at-most-once RPC by having thedRR@r keep an in-memonrgplay buffer

(r epl aybuf). In particular, each RPC client generates a random 64dipitaer as the RPC request identi-
fier. Since the RPC identifier space is fairly large (64-i®,can assume that the identifiers generated by all
RPC clients are unique. The RPC server remembers each RB€stehat it has seen in thepl aybuf .

If a received RPC request is already in thepl aybuf , then the RPC server treats it as a duplicate re-
guest. In order to prevent thheepl aybuf from growing without bound, Ben also removes all entries tha
are present in theepl aybuf for longer thant seconds based on tlié r st _seen field. Ben's RPC
client implementation is the same as his Labl’s naive implegation with retransmission enabled. The
pseudocode for his rpc server implementation is as folldacking is omitted, but you should assume Ben
performs locking correctly):

struct rpc_entry {
struct timeval first_seen
bool rep_present;
mar shal | rep;
rpc_entry() {
getti meof day(&first_seen, NULL);
rep_present = fal se

}
b
void rpcs::dispatch(...)
{

/Il replaybuf is a hash map of rpc_entry
/lreqid is the 64-bit identifier associated with the RPC request
if (replaybuf.find(reqid) !'= replaybuf.end()) { //replaybuf contains reqid
if (replaybuf[repid].rep_present) {
return replaybuf[repid].rep to the RPC client
}el se{
do not hi ng
}

}else {
replaybuf[repid] = rpc_entry();
execute the correspondi ng RPC handl er
add reply to replaybuf[repid].rep, set replaybuf[repid].rep _present to true
}
}

// executed periodicaly in a separate thread
void rpcs::expiretimer(...)

{
foreach repid in replaybuf {
if ((now - replaybuf[repid].first_seen) > t)
renove repid entry fromrepl aybuf
}
}

3. [5 poaintg]: Does Ben’s RPC implementation always guanrantee at-mmzst-execution? If your
answer is no, please give concrete examples.

4. [10 points]: Suppose the amount of time it takes the network to deliverckgidn one way is
bounded by seconds. Furthermore, assume the clock drift of betweempainyf arbitary machines

is at moste seconds. In other words, if machine M1 observes iHlaseconds have passed based on
its local clock, then any other machine (e.g. M2) will obgetivatz2 seconds have passed according
to M2's local clock such thattl — e < 22 < z1 + e. Under these two assumptions, describe
how Ben’s replaybuf-based RPC library can be made to guegaattmost-once delivery in the face
of lost, reordered, duplicate packetsd client or server failures. (Your solution should still have
retransmissions to deal with occasional losses and it draudid writing to disk).

Threads and mutexes

Ben Bitdiddle implements his Lab 1 lock server as follows:

NSO R®ONR

i nt
| ock_server::acquirereq(string I name, int &) //RPC handl er

{

-}

i
|
{

pt hread_nut ex_| ock(&server _mut ex);

Il ock *I = locks[Iname]; //assune | name al ready exists
if (I->state != FREE)

pt hread_cond_wai t (&server _cond, &server_nutex);

| ->state = LOCKED;

pt hr ead_mut ex_unl ock(&server _mnut ex);

return | ock_protocol:: K

nt
ock_server::rel easereq(string I name, int &r)

pt hread_nut ex_| ock(&server _mutex);

I ock *I = |ocks[I|nane];

| ->state = FREE;

pt hr ead_mut ex_unl ock(&server _mnut ex);
pt hr ead_cond_br oadcast (&server_cond) ;
return | ock_protocol:: K

5. [5 pointg]: Ben finds the his loclserver can grant the same lock to multiple clients simutiasky.
Identify and correct his mistakes. (You may directly mod#gn’s code fragments. Please write
correct code.)

6. [5 pointg]: Inr el easer eq, can Ben move line 19 to be in front of line 15? Explain.

[1l Crash Recovery

Ben Bitdiddle decides to store the content of his extmmver on the local ext3 file system of the ex-
tentserver. (Recall that the ext3 file system implements a redgihg scheme like that in Cedar, i.e.

the ext3 file system logs the modified state for each file systeta-data operation and periodically flushes
the log to disk.) Ben’s RPC handlers for the extsatver are as follows:

int extent_server:::put(extent_protocol::extentid_t id, std::string buf, int &
{
[1id2filename(id) converts the extent id into a unique filename deterninistically.
string f = id2fil enanme(id);
int fd = open(f.c_str(), O _CREAT| O TRUNC| O WRONLY) ;
if (fd < 0) return extent_protocol : | CERR
int r =wite(fd, buf.c_str(), buf.size());

cl ose(fd);
if (r >=0)
return extent_protocol::CK;
el se
return extent protocol:: | CERR,

}

int extent_server::get(extent_protocol::extentid_t id, std::string &buf)
{
string f = id2filenane(id);
int fd = open(f.c_str(), O_RDONLY);
if (fd < 0) return extent protocol:: NOENT;
char *p = new char[MAX_EXTENT_SI ZE] ;
int n =read(fd, p, MAX EXTENT_SI ZE);
if (n>=0) {
buf = string(p, n);
return extent_protocol:: K
}el se{
return extent_protocol:: | CERR

}
}

7. [10 points]: Ben uses his yfglient to create two empty files named "aaa” and "bbb” onerafte
another in the root directory. Suppose the extamver process crashes in the middle of creating
"bbb” (and after the successful completion of creating "aa&Vhen Ben restarts his exteserver,
what are the possible contents of his yfs root directory upmtarting the extergerver? Explain.
(You should assume that there is only one_gfignt active in the system for all questions in this
section.)

8. [10 points]: Frustrated by the anomalies seen in the crash recovery afrélgions, Ben asks
Alyssa Hacker for help. Alyssa remembers that the local Bbe3ystem operationename(const
char =*ol dpath, const char *newpath) is an atomic operation, i.e. if failure occurs in
the middle of this operation, the rename operation appeagiher have happened or not at all upon
recovery. Perform Alyssa’s fix on Ben’s code to ensure thatB@s can recover correctly during the
extentserver failure of creation operations. You can directlytevan Ben code in the previous page.

9. [5 points]: Does Alyssa’s fix ensure that Ben's yfs can always recoveecty during the failure
of the extentserver process during arbitary yfs operations? Explain.

IV Consistency

Ben Bitdiddle plans to replicate his extent service in Lalb4nclude two servers: X and Y. His new
extentclient implementation stores extents at both servers ambrextents from either X or Y at random.
Other than extentlient, Ben keeps his Lab4 solution unchanged (Recall thdtab4, Ben has enabled
locking to cope with concurrent accesses to the file systate)stThe relevant changes in Ben’'s gigent
to enable replication are as follows:

extent _protocol ::status
extent _client::put(extent_protocol::extentid t eid, std::string buf)
{

extent _protocol ::status ret = extent_protocol:: OK;

int r;

/lcl _Xis the rpcc client bound to server X

ret = cl_X->call (extent_protocol::put, eid, buf, r);

/lcl_Yis the rpcc client bound to server Y

ret = cl_Y->call (extent_protocol::put, eid, buf, r);

return ret;

}

extent _protocol ::status
extent _client::get(extent_protocol::extentid_t eid, std::string &buf)

{

extent _protocol ::status ret = extent_protocol:: OK;
if (rand() %2 == 0) { //randomy reads fromX or Y
ret = cl_X->call (extent_protocol::get, eid, buf);
}el se{
ret = cl_Y->call (extent_protocol::get, eid, buf);
}

return ret;

10. [10 points]: Does Ben’'s replicated extent service provide sequentiasistency? If your
answer is no, give an example scenario involving yfs fileesysbperations that cannot happen with a
sequentially consistent extent service but could happesmwising Ben’s extent service and explain.

10

Ben decides to tweak his implementation again so that alirtbdifications are sent to server X. Server X
stores the extent and further forwards it to server Y. Thergxdlient still reads extent from either server X
or Y at random. The new changes in Ben’s code are as follows.

extent _protocol ::status
extent _client::put(extent_protocol::extentid_t eid, std::string buf)
{

extent _protocol ::status ret = extent _protocol:: K

int r;

ret = cl_X->call (extent_protocol::put, eid, buf, r);

return ret;

}

extent _protocol ::status
extent _client::get(extent_protocol::extentid_ t eid, std::string &buf)
{
extent _protocol ::status ret = extent_protocol::OK
if (rand() %2 == 0) { //randomy reads fromX or Y
ret = cl_X->call (extent_protocol::get, eid, buf);
}el se{
ret = cl_Y->call (extent_protocol::get, eid, buf);
}

return ret;

}

//the RPC handl er for extent_server
i nt
extent _server::put(extent _protocol::extentid t eid, string buf, int &)
{
int ret = extent_protocol:: K
pt hr ead_nut ex_| ock(&xt ent _server _I| ock);
i n_menory_extents[id] = buf;
if (me =="X") //if | amserver X, forward the put request to server Y
ret = cl_Y->call (extent_protocol::put, eid, buf, r);
pt hr ead_nut ex_unl ock(&xt ent _server | ock);
return ret;
}

11. [5 points]: Does Ben’s new extent service achieve sequential consjstarthe context of his
yfs implementation (using a lock server)? If your answerdsexplain with an example.

11

12. [5 pointg]: If Ben intends to use his extent service as a generic keyevstiore (i.e. using it
without an external lock server), does his key-value stog@eément sequential consistency? Explain.
If your answer is no, explain with an example.

12

VvV (G22.3033-001

13. [5 points]: Describe the most memorable error you have made so far infdhe @bs. (Provide
enough detail so that we can understand your answetr.)

We would like to hear your opinions about the class so far|sase answer the following two questions.

14. [3 points]: What is the best aspect of this class?

15. [2 points]: What is the worst aspect of this class?

End of Quiz |

13

