Computer Science Department

New York University

G22.3033-001 Distributed Systems: Fall 2010

Quiz |

Some questions may be much harder than others. Read themoaifjh first and attack them jin
the order that allows you to make the most progress. If youdimggiestion ambiguous, be suire
to write down any assumptions you make. Be neat. If we carewstand your answer, we can'’t
give you credit!

All problems are open-ended questions. In order to receiditcyou must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

THISISAN OPEN BOOK, OPEN NOTESQUIZ.

I (xx/20)

[(xx/10) | 111 (xx/20) | IV (xx/15) | V (xx/10) | VI (xx/10) | Total (xx/85)

Name:

Multiple choice questions:

Answer the following multiple-choice questions. Cirek answers that apply. Each problem is worth 4
points. Each missing or wrong answer costs -2 point.

A. Which of the following statements are true about the desfgr<® and NFS?

1.
2.
3.

4,

A buggy NFS client program might corrupt the shared fildeysdata structure.

A buggy YFS client program might corrupt the shared fileéesysdata structure.

There are many more different types of RPC messages bead&F client and the NFS server than
there are between a YFS client and the extent/lock server.

If only one YFS client is allowed to perform file system wgt(e.g. create file, append data etc.)
while all other YFS clients can only perform read-only filesssgm operations, there is no need for
using a lock service.

B. Which of the following statements are true for sequentiasistency (SC)?

rwwN

SC is the strongest and yet practical consistency model.

SC allows for high availability during periods of netwatisconnectivity.

SC allows a client thread to read a stale value of someblaria

SC is only applicable to distributed shared memory systand not applicable to distributed storage
systems.

. Suppose there are two concurrent write operations (é@day different threads): one changes vari-

able A to 10, the other one changes variable B to 20. With SCpiissible that one thread reads
A=10, B=0 and another concurrent thread reads A=0,B=2Q(asdoth variables have zero as their
initial value).

C. Which of the following things are true for Bayou and Tra?

1.
2.
3.
4,

All storage replicas in Bayou and Tra eventually havetidahstate.

Bayou is able to detect update conflicts (i.e. when updappened in a nhon-sequential manner.)
When using Tra, one must keep a replica for all data in thiesfile system tree on every node.
One can and should build a banking application on top obrFiBayou.

D. Which of the following statements are true?

1.
2.

Serializability requires the database manager to séigllgrexecute transactions, one after another.
Serializability demands that, if the database managmiwes transaction A before transaction B, it
will commit (or abort) transaction A before commiting (oraating) transaction B.

. Snapshot isolation is a multiversion concurrency comsitheme that realizes serializability.
. No multi-version concurrency control scheme can reag@lizability; one must use 2-phase locking

for serializability.

Il Remote Procedure Call

After attending the lecture on failure recovery, Ben Bitl@lbecomes paranoid about failures. He is now
concerned that the RPC library he completed in Lab 1 mighpnegerve at-most-once guarantee after the
server reboots from a crash. After all, when the server mxofrom a crash, it loses all its state about
previous received RPCs and is at risk of executing a retraresirRPC that it has already executed before
the crash.

1. [10 points]: Does your completed RPC server in Lab 1 preserve at-mogt-gnarantee across
reboots? If not, give a counterexample. If yes, please @xpla

Hint: Recall that in our RPC library, each client createsp& ¢ object andbi nd() s it to the corre-
sponding server before using it. Further, the RPC packetdremntains the following fields:

/1 add RPC fields before the RPC request data
req_header h(ca.xid, proc, clt_nonce_, srv_nonce, xidrepw ndow.front());
req. pack._req_header (h);

[Il Threadsand locks

Ben Bitdiddle wants to implement a reader-writer mutex (Rédk) using ordinary pthread library. Ben has
come up with the following simple implementation:

struct rw ockt {
i nt nreaders; //nunber of readers who have grabbed the RFWIlock, initialized to O
int nwiters; //nunber of witers who have grabbed the RFRWIlock, initialized to O
pt hread_nutext m
pt hread_cond_t cv;
rwockt() { //some initialization code here... }

b

voi d
read_l ock(rw ockt *rw) {
pt hr ead_nmut ex_| ock(& w>n) ;
if (rw>nwiters > 0) {
pt hr ead_cond wai t (& W >cv, & w >n) ;
}
rw >nr eader s++;
pt hr ead_nmut ex_unl ock(& w >mj ;

}

voi d
read_unl ock(rwl ockt =*rw) {
pt hr ead_nut ex_| ock(& w>n) ;
rw >nr eader s- -;
if (rw>nreaders == 0) {
pt hr ead_cond_si gnal (& w >cv) ;

}

pt hr ead_nmut ex_unl ock(& w >m) ;

}

voi d
witelock(rwockt *rw {
pt hr ead_nut ex_| ock(& w>n) ;
if (rw>nreaders >0 || rw>nwiters > 0) {
pt hread_cond wai t (& W >cv, & w >m;
}
r'w>nwriters++;
pt hr ead_nmut ex_unl ock(& w >m) ;

}

voi d

writeunl ock(rwl ockt *rw) {
pt hr ead_nut ex_| ock(& w>n) ;
rw>nwiters--;
pt hr ead_cond_si gnal (& w >cv);
pt hr ead_nmut ex_unl ock(& w >mj ;

}

2. [10 pointg]: Ben has noticed multiple problems when testing the coresstof his R/W lock: 1)
sometimes, there are multiple readers and writers simediasly holding the lock, violating correct-
ness. 2) sometimes, while multiple readers should be betalsienultaneously hold the lock in read
mode, he found the code is causing them to complete & _| ock operation serially, one after
another.

Please correct Ben’s errors for him. (You may directly maskrycorrections on the previous page.)

3. [10 pointg]: Alice P. Hacker is concerned that Ben’'s implementation isfaio to writers. In
other words, readers might starve a waiting writer: thexddcbe arbitarily many readers coming and
holding the lock while a writer is waiting for the lock. Pleagive a R/W lock implementation that
favors the writer. In other words, any waiting writer cantythe R/W lock after a bounded amount
of time.

continued from previous page....

IV Crash Recovery

In the class, we have simply assumed that writing to a sinigle gbctor is atomic with respect to failures.
In other words, the write operation either succeeds in itisedp (leaving the new data) or not at all (leaving
the old data intact). Ben Bitdiddle is using a disk for whibistassumption does not hold. The disk may
fail in the middle of an sector write, leaving partially vieih new data and corrupting existing data on that
sector.

Ben would like to implemenat oni c write() andat om c_read() on top of this disk. The cor-
rect behavior of these functions should beatform ¢ wri t e(addr, data) succeeds, all subsequent
at onm c_read(addr, buffer) returns the new data written. #tom c_write(addr, data)
fails because of a disk crash, all subsequentm c¢_r ead(addr, buffer) returns the old data stored
ataddr before the crasheat om c wri t e started.

4. [5 points]: Ben’s first idea is to only write data in the first 500 byte of &2%iyte sector
and reserve the last 12 byte as the checksum. Ben implententhsumw i t e(i nt addr,
char [500] dat a) function which writes both the 500-bytkta and its checksunthsum(data),
into the underlying 512-byte sector with addres&lr. The bool chsumread(int addr,
char =+buffer) function reads the underlying 512-byte sector and verifie$ the last 12-byte
checksum is correct for the preceding 500-byte data blotko,lthe data is returned, otherwise a
failure is returned. Can Ben directly us@sumw i t e andchsumr ead for atomically reading
and writing data blocks of 500-byte in size? Please explain.

5. [10 points]: Please help Ben design and implementdh®ni c_w it e andat om c_read
functions. Hint: you might want to consider storing two cepof checksumed data at one address.

V 2P commit and Snapshot isolation

Ben Bitdiddle wants to implement snapshot isolation in #ithisted storage service. Ben'’s system consists
of a single timestamp serveirsérver) and a number of storage servers (eyands2) (see Figure below).

1): obtain start
timestamp at
start of T1

tserver

2): obtain commit |,
timestamp at end
of T1

N
3): do 2P-commit to
give buffered writes
to storage servers

Here’s an example of how Ben'’s system works. Suppé&eitl is executing a transaction T1 that writes
two items X and Yclientl first obtains a start timestamp for T1 fratwerver, say,T'1.sts = 1. During
execution of the transactionlient1 buffers writes to X and Y locally. After T1 commitsgjient1 obtains a
commit timestamp fromserver, say,T'1.cts = 10. Sincesl is the server responsible for storing X asii

is the server responsible for storingctient1 performs a 2P-commit (as the coordinator) withand s2 to

1) check whether T1 suffers from write-write conflicts witther concurrent transactions and 2) write both
items tosl ands2 atomically if T1 can commit. In particular]/ientl sendsI’1.sts andT'1.cts as well as
the buffered write of X tas1 in a 2P-prepare message. Likewise, it also s@ndsts andT'1.cts as well as
the buffered write of Y ta2 as a 2P-prepare message. Botlands2 check for write-write conflicts locally
and vote accordingly.

Let's examine how an ongoing 2P-commit affects concurreatls. For example, suppo%d is in the
middle of 2P-commit and1 has just voted “yes” to commif'1’s write of X (but it has not known the final
outcome of the 2P-commit yet). Suppose another concunmamsdctionl’2 wants to read X froms1 with
start timestam@™2 = 11.

6. [10 points]: Which of the following action(s) is correct farl to serve T2's reads?
1. sl returns the write of T1 (i.e. the version of X with timstamp) 1® T2 immediately.
2. s1 returns the latest version of X that's no bigger than T1's gottimestamp, e.g. suppose
there’s a version of X with timestamp 9, theh can return this version as the result of read to
T2 immediately.
3. s1 blocks the read of T2 until it has received the outcome of ie@nmit.

Please explain your answer. Specifically, if you think a chds incorrect, please explain why it is
wrong.

continued from previous page....

10

VI G22.3033-001

7. [5 points]: Describe the most memorable error you have made so far infahe @bs. (Provide
enough detail so that we can understand your answer.)

We would like to hear your opinions about the class so far|sase answer the following two questions.

8. [3 points]: What is the best aspect of this class?

9. [2 points]: What is the worst aspect of this class?

End of Quiz |

11

