
Computer Science Department

New York University

G22.3033-001 Distributed Systems: Fall 2010

Quiz I

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you finda question ambiguous, be sure
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

I (xx/20) II (xx/10) III (xx/20) IV (xx/15) V (xx/10) VI (xx/10) Total (xx/85)

Name:

1

I Multiple choice questions:

Answer the following multiple-choice questions. Circleall answers that apply. Each problem is worth 4
points. Each missing or wrong answer costs -2 point.

A. Which of the following statements are true about the design of YFS and NFS?

1. A buggy NFS client program might corrupt the shared file system data structure.
2. A buggy YFS client program might corrupt the shared file system data structure.
3. There are many more different types of RPC messages between a NSF client and the NFS server than

there are between a YFS client and the extent/lock server.
4. If only one YFS client is allowed to perform file system writes (e.g. create file, append data etc.)

while all other YFS clients can only perform read-only file system operations, there is no need for
using a lock service.

B. Which of the following statements are true for sequential consistency (SC)?

1. SC is the strongest and yet practical consistency model.
2. SC allows for high availability during periods of networkdisconnectivity.
3. SC allows a client thread to read a stale value of some variable.
4. SC is only applicable to distributed shared memory systems and not applicable to distributed storage

systems.
5. Suppose there are two concurrent write operations (executed by different threads): one changes vari-

able A to 10, the other one changes variable B to 20. With SC, it’s possible that one thread reads
A=10, B=0 and another concurrent thread reads A=0,B=20 (assume both variables have zero as their
initial value).

C. Which of the following things are true for Bayou and Tra?

1. All storage replicas in Bayou and Tra eventually have identical state.
2. Bayou is able to detect update conflicts (i.e. when updateshappened in a non-sequential manner.)
3. When using Tra, one must keep a replica for all data in the entire file system tree on every node.
4. One can and should build a banking application on top of Traor Bayou.

D. Which of the following statements are true?

1. Serializability requires the database manager to sequentially execute transactions, one after another.
2. Serializability demands that, if the database manager receives transaction A before transaction B, it

will commit (or abort) transaction A before commiting (or aborting) transaction B.
3. Snapshot isolation is a multiversion concurrency control scheme that realizes serializability.
4. No multi-version concurrency control scheme can realizeserializability; one must use 2-phase locking

for serializability.

2

II Remote Procedure Call

After attending the lecture on failure recovery, Ben Bitdiddle becomes paranoid about failures. He is now
concerned that the RPC library he completed in Lab 1 might notpreserve at-most-once guarantee after the
server reboots from a crash. After all, when the server recovers from a crash, it loses all its state about
previous received RPCs and is at risk of executing a retransmitted RPC that it has already executed before
the crash.

1. [10 points]: Does your completed RPC server in Lab 1 preserve at-most-once guarantee across
reboots? If not, give a counterexample. If yes, please explain.

Hint: Recall that in our RPC library, each client creates arpcc object andbind()s it to the corre-
sponding server before using it. Further, the RPC packet header contains the following fields:

// add RPC fields before the RPC request data
req header h(ca.xid, proc, clt nonce , srv nonce , xid rep window .front());
req.pack req header(h);

3

III Threads and locks

Ben Bitdiddle wants to implement a reader-writer mutex (R/Wlock) using ordinary pthread library. Ben has
come up with the following simple implementation:

struct rwlock t {
int nreaders; //number of readers who have grabbed the R/W lock, initialized to 0
int nwriters; //number of writers who have grabbed the R/W lock, initialized to 0
pthread mutex t m;
pthread cond t cv;
rwlock t() { //some initialization code here... }

};

void
read lock(rwlock t *rw) {

pthread mutex lock(&rw->m);
if (rw->nwriters > 0) {
pthread cond wait(&rw->cv,&rw->m);

}
rw->nreaders++;
pthread mutex unlock(&rw->m);

}

void
read unlock(rwlock t *rw) {

pthread mutex lock(&rw->m);
rw->nreaders--;
if (rw->nreaders == 0) {
pthread cond signal(&rw->cv);

}
pthread mutex unlock(&rw->m);

}

void
write lock(rwlock t *rw) {

pthread mutex lock(&rw->m);
if (rw->nreaders > 0 || rw->nwriters > 0) {
pthread cond wait(&rw->cv, &rw->m);

}
rw->nwriters++;
pthread mutex unlock(&rw->m);

}

void
write unlock(rwlock t *rw) {

pthread mutex lock(&rw->m);
rw->nwriters--;
pthread cond signal(&rw->cv);
pthread mutex unlock(&rw->m);

}

4

2. [10 points]: Ben has noticed multiple problems when testing the correctness of his R/W lock: 1)
sometimes, there are multiple readers and writers simultaneously holding the lock, violating correct-
ness. 2) sometimes, while multiple readers should be be ableto simultaneously hold the lock in read
mode, he found the code is causing them to complete theread lock operation serially, one after
another.

Please correct Ben’s errors for him. (You may directly mark your corrections on the previous page.)

3. [10 points]: Alice P. Hacker is concerned that Ben’s implementation is not fair to writers. In
other words, readers might starve a waiting writer: there could be arbitarily many readers coming and
holding the lock while a writer is waiting for the lock. Please give a R/W lock implementation that
favors the writer. In other words, any waiting writer can grab the R/W lock after a bounded amount
of time.

5

continued from previous page....

6

IV Crash Recovery

In the class, we have simply assumed that writing to a single disk sector is atomic with respect to failures.
In other words, the write operation either succeeds in its entirety (leaving the new data) or not at all (leaving
the old data intact). Ben Bitdiddle is using a disk for which this assumption does not hold. The disk may
fail in the middle of an sector write, leaving partially written new data and corrupting existing data on that
sector.

Ben would like to implementatomic write() andatomic read() on top of this disk. The cor-
rect behavior of these functions should be: ifatomic write(addr, data) succeeds, all subsequent
atomic read(addr, buffer) returns the new data written. Ifatomic write(addr, data)
fails because of a disk crash, all subsequentatomic read(addr, buffer) returns the old data stored
ataddr before the crashedatomic write started.

4. [5 points]: Ben’s first idea is to only write data in the first 500 byte of a 512-byte sector
and reserve the last 12 byte as the checksum. Ben implements the chsum write(int addr,
char[500] data) function which writes both the 500-bytedata and its checksum,chsum(data),
into the underlying 512-byte sector with addressaddr. The bool chsum read(int addr,
char *buffer) function reads the underlying 512-byte sector and verifies that the last 12-byte
checksum is correct for the preceding 500-byte data block. If so, the data is returned, otherwise a
failure is returned. Can Ben directly usechsum write andchsum read for atomically reading
and writing data blocks of 500-byte in size? Please explain.

7

5. [10 points]: Please help Ben design and implement theatomic write andatomic read
functions. Hint: you might want to consider storing two copies of checksumed data at one address.

8

V 2P commit and Snapshot isolation

Ben Bitdiddle wants to implement snapshot isolation in a distributed storage service. Ben’s system consists
of a single timestamp server (tserver) and a number of storage servers (e.g.s1 ands2) (see Figure below).

tserver

s1 s2

client1 client2

1): obtain start
timestamp at
start of T1

2): obtain commit
timestamp at end

of T1

3): do 2P-commit to
give buffered writes
to storage servers

Here’s an example of how Ben’s system works. Supposeclient1 is executing a transaction T1 that writes
two items X and Y.client1 first obtains a start timestamp for T1 fromtserver, say,T1.sts = 1. During
execution of the transaction,client1 buffers writes to X and Y locally. After T1 commits,client1 obtains a
commit timestamp fromtserver, say,T1.cts = 10. Sinces1 is the server responsible for storing X ands2
is the server responsible for storing Y,client1 performs a 2P-commit (as the coordinator) withs1 ands2 to
1) check whether T1 suffers from write-write conflicts with other concurrent transactions and 2) write both
items tos1 ands2 atomically if T1 can commit. In particular,client1 sendsT1.sts andT1.cts as well as
the buffered write of X tos1 in a 2P-prepare message. Likewise, it also sendsT1.sts andT1.cts as well as
the buffered write of Y tos2 as a 2P-prepare message. Boths1 ands2 check for write-write conflicts locally
and vote accordingly.

Let’s examine how an ongoing 2P-commit affects concurrent reads. For example, supposeT1 is in the
middle of 2P-commit ands1 has just voted “yes” to commitT1’s write of X (but it has not known the final
outcome of the 2P-commit yet). Suppose another concurrent transactionT2 wants to read X froms1 with
start timestampT2 = 11.

6. [10 points]: Which of the following action(s) is correct fors1 to serve T2’s reads?
1. s1 returns the write of T1 (i.e. the version of X with timstamp 10) to T2 immediately.
2. s1 returns the latest version of X that’s no bigger than T1’s commit timestamp, e.g. suppose

there’s a version of X with timestamp 9, thens1 can return this version as the result of read to
T2 immediately.

3. s1 blocks the read of T2 until it has received the outcome of the 2P commit.

Please explain your answer. Specifically, if you think a choice is incorrect, please explain why it is
wrong.

9

continued from previous page....

10

VI G22.3033-001

7. [5 points]: Describe the most memorable error you have made so far in one of the labs. (Provide
enough detail so that we can understand your answer.)

We would like to hear your opinions about the class so far, so please answer the following two questions.

8. [3 points]: What is the best aspect of this class?

9. [2 points]: What is the worst aspect of this class?

End of Quiz I

11

