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Quiz I

In order to receive credit you must answer the question as precisely as possible. You have 80

minutes to answer this quiz.

Some questions may be much harder than others. Read them all through first and attack them in

the order that allows you to make the most progress. If you find a question ambiguous, be sure

to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t

give you credit!
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I Multiple choice questions (25 points):

Answer the following multiple-choice questions. Circle all answers that apply. Each problem is worth 5

points. Each missing or wrong answer costs -3 point.

A. Suppose you are using the Lab 1’s original RPC system (i.e. before you add the at-most-once guarantee).

Consider the following client code snippet (assume all return values are OK):

...

cl->call(kv_protocol::put, "k1", "1", ...);

cl->call(kv_protocol::put, "k1", "2", ...);

cl->call(kv_protocol::put, "k1", "3", ...);

cl->call(kv_protocol::get, "k1", val);

cout << val << endl;

What might be the potential resulting output? Let’s assume the initial value of key ”k1” is ”0”.

1. 0

2. 1

3. 2

4. 3

B. Which of the following statements are true for an RPC system with at-most-once guarantee?

1. When an RPC call succeeds, the client knows that the server has executed the corresponding handler

exactly once.

2. When an RPC call fails, the client knows that the server has not executed the corresponding handler.

3. The server must not forget the id and result of every RPC that it ever has processed.

4. If a server restarts after a crash, it must use a new server nonce (i.e. rpcs::nonce ) that is different

than the one it has used before the crash.

C. Which of the following things are true about linearizability?

1. A linearizable system is also causally-consistent.

2. A linearizable key-value system cannot scale out to use many machines.

3. If a client C1 issues request PUT(x=1) before another client C2 issues request PUT(y=2), then all

other clients who have seen C2’s write (i.e. GET(y)=2) cannot observe x’s old value prior to C1’s

write.

4. It is the job of application programmers to ensure that a system is linearizable.

D. Which of the following things are true about causal consistency?

1. Causal consistency can not be realized in a scalable fashion.

2. Causal consistency offers weaker semantics than linearizability.

3. In a causally consistent storage system, data replication across nodes can be done in the background

asynchronously.

4. In a causally consistent storage system, if a client C1’s write completes before another client C2’s

read, C2 is guaranteed to see C1’s write.
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E. Which of the following things are true about transactions?

1. A database must execute transactions serially one after another in order to achieve serializability.

2. A transaction that only reads from the database does not need any concurrency control to ensure

serializability.

3. Two phase locking is a concurrency control mechanism to achieve serializability.

4. Under serializability, a transaction T1 may read the writes of a not-yet-committed transaction T2.
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II Transactions (30 pts)

On SuperAuction.com website, users can sell their items and bid on others’ items. The website allows two

types of operations, BidItem and EndAuction. BidItem is invoked whenever a user places a bid on

an item. EndAuction is invoked by a system timer to mark the item as sold. The pseudocode for the two

functions is provided below. For simplicity, we assume there’s only a single item on sale. Shared variable

highest bid stores the item’s current highest bid price. Shared variable sold stores the sale status of

the item.

//invoked when a user bids on the item with bidding price bid

BidItem(bid_price):

if (!sold && bid_price > highest_bid) {

highest_bid = bid_price

cout << "success, highest=" << bid_price << endl

} else if (sold) {

cout << "failure, item already sold" << endl

} else {

cout << "failure, highest=" << highest_bid << endl

}

EndAuction():

sold = true;

cout << "item sold for " << highest_bid << endl

For each of the questions below, we assume these initial values: highest bid=100, sold=false.

1. [10 points]: If BidItem is enclosed in a serializable transaction, what are the potential printed

results when two operations, BidItem(120) and BidItem(200), execute concurrently? What

are the potential values for shared variable highest bid after both operations finish? Please list all

potential outcomes. (Note that we assume EndAuction is never invoked here.)
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2. [10 points]: If BidItem is not enclosed in a transaction, what are the potential printed re-

sults when two operations, BidItem(120) and BidItem(200), execute concurrently? What are

the potential values for shared variable highest bid after both operations finish? Please list all

potential outcomes. (Note that we assume EndAuction is never invoked here.)

3. [10 points]: If BidItem and EndAuction are each enclosed in a transaction guaranteeing

snapshot isolation, what are the potential printed results when two operations, BidItem(110)

and EndAuction() execute concurrently? What are the potential values for shared variables

highest bid and sold after both operations finish? Please list all potential outcomes.
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III Paxos (25 pts)

When doing Lab 2, Ben Bitdiddle thinks he can speed up Paxos from a three-round to a two-round protocol.
In his proposition, as soon as a node has accepted a value, it returns the value as the final consensus value.
Below is the pseudocode of Ben’s accept RPC handler function:

acceptor’s accept(n, v) RPC handler:

//n is the proposal number

//v is the proposal’s value

if (n >= n_h) {

n_h = n

n_a = n

v_a = v

commit(v_a) //take v_a as the consensus value

reply accept_ok(n)

} else {

reply accept_rejected(n, n_h)

}

4. [10 points]: Is Ben’s modification correct? If not, please explain using a counterexample. (If you

are giving a counterexample, please keep it simple by using ≤ 3 nodes in total and ≤ 2 concurrent

proposers.)
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5. [5 points]: Alyssa P. Hacker notices that Ben’s accept handler does not durably log any data to a

node’s local disk. She thinks that is not correct if a crashed node comes back online. What are those

variables that must be logged? Choose all that apply.

1. n h

2. n a

3. v a

6. [10 points]: Ben Bitdiddle argues with Alyssa that his Lab2 implementation does not need to

log those values if a crashed node does not join the system with its old node identifier upon recovery.

Instead, a recovered node joins using a new unique node identifier. Is Ben correct? If not, please give

a counter example. If yes, please give one reason why one might not want to adopt Ben’s approach in

practice.
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IV Linearizability (20 pts)

Consider the following histories of execution for a key-value store (assuming all keys have an initial value

of 0). Preq refers to a put request while Pok refers to a reply for the corresponding put request. Similarly,

Greq refers to a get request while Gok refers to a reply for the corresponding get request.

1. Preq(x = 1), Greq(x), Pok(x = 1), Gok(x = 0)

2. Preq(x = 1), Greq(x), Pok(x = 1), Gok(x = 1)

3. Preq(x = 1), Pok(x = 1), Greq(x), Gok(x = 0)

4. Preq(x = 1), Greq(x), Gok(x = 1), G′

req(x), G
′

ok(x = 0), Pok(x = 1)

5. Preq(x = 1), Preq(y = 1), Pok(y = 1), Greq(y), Gok(y = 1), Pok(x = 1)

7. [10 points]: Which of the above histories are not linearizable? Please explain why.
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Figure 1: Alyssa P. Hacker’s primary-backup replication scheme replicates data in a pipeline from the

primary (N0) to the two backups (N1, N2).

Alyssa P. Hacker comes up with a tweak on the traditional primary-backup system. In Alyssa’s scheme, the

primary still handles all PUT requests. However, instead of replicating PUT requests in parallel to N1 and

N2, the replication is done in a pipeline from N0 to N1 and from N1 to N2. The steps of the protocol are

shown in Figure 1.

• In step 1, a client issues a put request to the primary N0. The primary processes the request locally.

• In step 2, the primary N0 forwards the put request to backup node N1 and N1 processes the received

request locally.

• In step 3, N1 forwards the put request to backup node N2 and N2 processes the received request

locally.

• Lastly, in step 4, N2 replies to the client that its put request has finished.

If the primary N0 fails, Alyssa plans to manually remove N0 and resume the system with N1 assuming the

role of primary. We assume that N1 and N2 do not fail.

8. [5 points]:. In Alyssa’s replication scheme, can the primary node N0 handle get requests while

guaranteeing linearizability? Explain. If not, which of the above histories are possible?
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9. [5 points]:.In Alyssa’s replication scheme, can clients randomly choose either N1 or N2 to

issue each of its get request while guaranteeing linearizability? Explain. If not, which of the above

histories are possible?

End of Quiz I
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