Course Overview

Computer Systems Organization (Fall 2016)

Instructor:
Jinyang Li

Staff

* Lecturer:
— Jinyang Li jinyang@cs.nyu.edu

e Recitation instructor:
— Hassan Mujtaba Zaidi hmz224@nyu.edu

* TAS:
— Subhankar Ghosh subhankar.ghosh@nyu.edu
— Will Zhou will.zhou@nyu.edu

Computer Systems Organization

)
........

Not that kind of organization

This class adds to your CV...

* Cprogramming
* UNIX
e X86 assembly

Not what the class is about either

What this class is about

* Those details that set hackers apart from
novice programmers

— How your program runs on the hardware
— Why it fails
— Why it is slow

* Modern computer systems are shrouded in
layers of abstraction

What is an abstraction
(in computer systems)?

* A technique for managing the complexities in
engineered systems.

— Establish an “abstract” interface for interacting
with a system/module

— Hide details behind the interface

Abstractions: the car example

user-level

mechanic-level

Electric motor

designer/builder-level

ﬁl‘jﬁ-[l.’]"_‘ engine

www_explainthatstuff.com rpm

Abstractions: computer systems

applications [Ofld
programming |system
language tools
Operating systems

Hardware

AN x64 PROCESYOR 1S SLREAMING ALONG AT BLUONS OF
CYCLES PER SECOND TO RUN THE XNU KERNEL, WHICH 1S

FRANTICALLY WORKING THROUGH ALL THE POSIX -SPECIFED

ARSTRACTION TO CREATE THE DRRWIN SYSTEM UNDERIXING
05 X WHICH IN TORN [S STRAINING ITSELF TO RUN FIRERX

AND IT5 GECKO RENDERER, WHICH CREATES A RASH OBTECT
WHICH RENDERS TOZENS OF VIDE() FRAMES EVERY SECOND

BECAUSE T WANTED TO SEE A CAT
JUMP INTO A BOX AND FALL OVER.

O I AM A GOD.

Many layers of abstraction

Course Theme:
Abstraction Is Good But Don’t Forget Reality

 Most CS classes stay within a single layer of
abstraction

* This class:
— Help you peek under-the-hood” in many layers

e Goal:

— Make you more effective programmers
* Debug problems
* Tune performance
— Prepare you for later “systems” classes in CS

* Compilers, Operating Systems, Networks, Computer
Architecture, Distributed Systems

Reality #1:
Ints are not Integers, Floats are not Reals

e x2>07

e (Xx+y)+z = x+(y+2)?

Public class Test {

public static void main (String[] args) {
int x = Integer.parselnt(args|[0]) ;
Systems.out.println(x * x);

jJava Test 12 = 144
jJjava Test 123456 = P77

Reality #1:
Ints are not Integers, Floats are not Reals

|os 2.0

BARA

%,_@\

M_/L/\-/\

-

. 1306... ,307..

-
I

Y

. 32,767..,-32,7%68...

. .=32,767...-32,76 ...

Reality #2:
You’ve Got to Know Assembly

* No need to program in assembly

 Knowledge of assembly helps one understand
machine-level execution
— Debugging
— Performance tuning
— Writing system software (e.g. compilers, OS)
— Creating / fighting malware

* x86 assembly is the language of choice!

Reality #3: Memory Matters

e Memory is not unbounded
— It must be allocated and managed

* Memory referencing bugs are esp. wicked
* Memories of diff applications are isolated

Memory Referencing Errors

* C/C++ let programmers make memory errors
— Out of bounds array references
— Invalid pointer values
— Double free, use after free

* Errors can lead to nasty bugs
— Corrupt program objects
— Effect of bug observed long after the corruption

Memory Referencing Bug Example

double fun(int i)
{
double d[1l] = {3.14}; /* allocate an array of 1 double*/
int a[2]; /* allocate an array of 2 integers */
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun (0) = 3.14 Critical State 6
fun(1l) -> 3.14 5 5
fun(2) = 3.1399998664856 :
fun (3) = 2.00000061035156 ? 4
fun(4) = 5.14 d7 ... d4 3
fun(6) = Segmentation fault
d3 do 2
alll] 1
al0] 0

Reality #4: Asymptotic performance
is not always sufficient

e Constant factors matter

* |[n order to optimize performance:
— How programs compiled and executed
— How to measure performance and identify bottlenecks

— How to speedup using multiple CPU cores

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

50000

37500 Best code (K. Goto)

25000

12500

Triple loop

0 2,250 4,500 6,750 9,000

matnx size

Both implementations have exactly the same operations count (2n3)

Reason for 20x: Multi-threading, blocking, loop unrolling, array
scalarization

Course Perspective

* Most Systems Courses are Builder-Centric
— Computer Architecture
e Design pipelined processor in Verilog
— Operating Systems
* Implement large portions of operating system

— Compilers
* Write compiler for simple language

— Networking
* Implement and simulate network protocols

Course Perspective (Cont.)

* This course is programmer-centric

— Understanding of underlying system makes a
more effective programmer

— Bring out the hidden hacker in everyone

Textbooks

 Randal E. Bryant and David R. O’Hallaron,

— “Computer Systems: A Programmer’s Perspective,
3nd Edition”, http://csapp.cs.cmu.edu

D EDITION

COMPUTER SYSTEMS

A PROGRAMMER'S PERSPECTIVE

BRYANT « O'HALLARON

Textbooks

* Brian Kernighan and Dennis Ritchie,
— “The C Programming Language, 2" Edition”,
Prentice Hall, 1988, On reserve at NYU library

SECOND EDITION

' ANs‘

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS MLRITCHIE

Course Components

* Lectures (M/W 3:30-4:45pm)
* Recitation (W 8-9:15am)
— In-class exercises provide hands-on instruction

* 5 Programming labs

— 2-3 weeks each
e Mid-term
 Final exam

Grade breakdown

Participation (5%)
— Q&A during lecture/recitation
— helpfulness on class discussion board

Labs (35%)
Midterm (25%)
Final (35%)

Course Syllabus

Basic C

— L1 (CLab), L2 (Rabin-Karp Lab)

Assembly: Representation of program and data
— L3 (Binarylab)

Virtual Memory: address translation, allocation
— L4 (Malloclab)

Concurrent programming
— L5 (Threadlab)

Getting Help

* Class Web Page:
http://www.news.cs.nyu.edu/~jinyang/fal6-
cso

— Class schedule (subject to change...)
— Lectures notes, assignments

* Piazza is our message board

Lab Policies

* You must work alone on all assignments
— You may post questions on Piazza,

— You are encouraged to answer others’ questions,
but refrain from explicitly giving away solutions.

* Hand-ins
— Assignments due at 11:59pm on the due date

— Everybody has 5 grace days
— Zero score if a lab is handed in >2 days late

Integrity and Collaboration Policy

We will enforce the policy strictly.

1. The work that you turn in must be yours
You must acknowledge your influences

3. You must not look at, or use, solutions from prior years or
the Web, or seek assistance from the Internet

4. You must take reasonable steps to protect your work
— You must not publish your solutions

5. If there are inexplicable discrepancies between exam and

lab performance, we will over-weight the exam and
interview you.

N

Integrity and Collaboration Policy

 Academic integrity is very important.
— Fairness
— |If you don’t do the work, you won’t learn anything

Integrity and Collaboration Policy

* We will enforce this policy strictly and report
violators to the department and Dean.

* |f you cannot complete an assignment, don’t
turn it in: one or two uncompleted
assignments won’t result in F.

