Floating point

Jinyang Li

a few slides are adapted from Bryant & O'Hallaron

What we've learnt and what's ahead

- Bit representation of integers
 - Can only represent a finite set of integers (signed, unsigned)
 - Overflow
- Big representation of real numbers
 - Can only represent a finite set of numbers
 - Discretization of real numbers (loss of precision)
 - Overflow
 - Rounding

How to represent real numbers?

The decimal system

12.34
$$x = \sum_{i=-u}^{|i=v|} x_i * 10^i$$
10 1 0.1 0.01 (10^1) (10^0) (10^-1) (10^-2)

Generalize to binary representation

Naive approach: fixed point representation

- 0.00011001....
- What's 0.11111111....111₂?
- $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{(2^{16})} = 1 (\frac{1}{2^{16}}) \rightarrow 1$
- Largest 4-byte fractional numbers?
- 2^15-2^(-16)

Limitations of fixed point

- Useful in certain settings (embedded device)
- Limited range and precision: e.g. using 4-byte
 - largest number 2^15
 - fixed precision $1/(2^{-16})$
- Not efficient: Small numbers have many zeros after radix points
 - 1/10 0.0001100110011[0011]...₂

IEEE Floating point

- It's a standard (convention)
 - A group of people get together in the 80s to pick a convention as the standard
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

FP: taking inspiration from scientific notation

$$M \cdot 10^E$$

Mantissa or significand

- In normalized form, 1 <= M < 10
 - Why normalizing it?
- The most compact way of writing a real number
- Normalized form cannot represent 0!

Floating point representation

sign bit $(-1)^{s} \cdot M \cdot 2^{E}$

encodes E, but not identical to E

encodes M, but not identical to M

single precision

s exp (8-bit) frac (23-bit)

Floating point: normalized encoding

s exp (8-bit) frac (23-bit)
$$(-1)^s \cdot M \cdot 2^E$$

- When: exp ≠ 000...0 and exp ≠ 111...1
- E = exp bias

8-bit unsigned

Constant, 127

- Range of E: [-126, 127]
- M = 1.frac
 - Range of M: [1, 2) (normalized)

FP: normalized encoding

Floating point: de-normalized encoding

s exp (8-bit) frac (23-bit)
$$(-1)^s \cdot M \cdot 2^E$$

- When: exp = 000...0
- E = -126
- M = 0.frac
 - Range of M: [0, 1)
- What's zero like?
 - -0000...000
 - -1000...000

Floating point: denormalized

Smallest de-normalized value?

$$2^{-149}$$
 0 00... 00.....1

- How about precision?
 - Fixed at 2^{-149}

Floating point: special values

```
s exp (11111111) frac (23-bit)
```

- When: exp = 111...1
- ∞: exp = 111...1, frac = 000...0
 - Operation that overflows
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- NaN: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

floating point "floats"

"floating" as radix point is not at a fixed position

Adjacent floats have adjacent bit representations

Single, double precision

- Single precision
 - highest precision: 2^-149
 - Highest magnitude: ≈ 2^128
- Double precision
 - highest precision: $2^{-52-1022} = 2^{-1074}$
 - Highest magnitude: ≈ 2^1025

Floating point operations

- Addition, subtraction, multiplication, division etc.
- FP Caveats:
 - Invalid operation: 0/0, sqrt(-1), ∞+∞
 - Divide by zero: x/0→∞
 - Overflows: result too big to fit
 - Underflows: 0 < result < smallest denormalized value</p>
 - Inexact: round it!

Why divide by zero = ∞ ?

- Allow a calculation to continue and produce a valid result
- Example:

If R1 or R2 is 0, overall resistance should be 0

Rounding: round-to-even

- Default Rounding Mode
- Decimal examples:

```
7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)
```

Round-to-even: binary numbers

• Example: Round to nearest 1/4

Binary	Rounded	Action
10.000112		
10.00 <mark>110</mark> 2		
10.00 <mark>100</mark> 2		
10.10 <mark>100</mark> ₂		

Floating point addition

- Commutative? x+y == y+x?
- Associative? (x+y)+z = x + (y+z)?
 - Overflow:

```
(3.14+1e10)-1e10 = 0
3.14+(1e10-1e10) = 3.14
```

- Rounding
- Every number has an additive inverse?
 - Yes except for ∞ and NaN
- Monoticity? $a \ge b \Rightarrow a+c \ge b+c$?

Floating point multiplication

- Commutative? x* y == y*x?
- Associative? $(x^*y)^*z = x^*(y^*z)$?
 - Overflow:

```
(1e20*1e20)*1e-20=inf,

1e20*(1e20*1e-20)=1e20
```

- Rounding
- (x+y)*z = x*z + y*z?
 - -1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN
- Monoticity? $a \ge b \Rightarrow a^*c \ge b^*c$?

Floating point in real world

- Storing time in computer games as a FP?
- Precision diminishes as time gets bigger

FP value	Time value	FP precision	Time precision
1	1 sec	1.19E-07	119 nanoseconds
100	~1.5 min	7.63E-06	7.63 microseconds
10 000	~3 hours	0.000977	.976 milliseconds
1000 000	~11 days	0.0625	62.5 milliseconds

Floating point in the real world

Using floating point to measure distances

FP value	Length	FP precision	Precision size
1	1 meter	1.19E-07	Virus
100	100 meter	7.63E-06	red blood cell
10 000	10 km	0.000977	toenail thickness
1000 000	.16x earth radius	0.0625	credit card width

Table source: Random ASCII

Floating point trouble

Comparing floats for equality is a bad idea!

```
float f = 0.1;
while (f != 1.0) {
 f += 0.1;
}
```

Floating point trouble

Never count using floating points

```
count = 0;
for (float f = 0.0; f < 1.0; f += 0.1) {
    count++;
}</pre>
```

Floating point summary

- Floating points are tricky
 - Precision diminishes as magnitude grows
 - overflow, rounding error
- Many real world disasters due to FP trickiness
 - Patriot Missile failed to intercept due to 0.1 rounding error (1991)
 - Ariane 5 explosion due to overflow in converting from double to int (1996)