Floating point

Jinyang Li

a few slides are adapted from Bryant & O’Hallaron

What we’ve learnt and what’s ahead

* Bit representation of integers

— Can only represent a finite set of integers (signed,
unsigned)

— Overflow
* Big representation of real numbers
— Can only represent a finite set of numbers
— Discretization of real numbers (loss of precision)
— Overflow
— Rounding

How to represent real numbers?

* The decimal system

12.34 x=Yx5*10

10 1 0.1 0.01
(10”1) (10”0) (107-1) (107-2)

Generalize to binary representation

2V

V- x=2bl*21

4
2
1
by [bu|*e | b2 | b1 | bo Lb-l by | bz | eee | buy

1/2

1/4 XX
1/8

2-U

Naive approach: fixed point representation

w-bytes
I
’ \
sign
* What's 10.011,? fixed, e.g. middle
. 23/8

* What’s 0.110in binary?

 0.00011001....

e What's0.11111111....111>°7

e %+%+1/8+..1/(2716)=1-(1/2716)> 1
e Largest 4-byte fractional numbers?

e 2/15-2/(-16)

Limitations of fixed point

e Useful in certain settings (embedded device)
* Limited range and precision: e.g. using 4-byte
— largest number 2715
— fixed precision 1/(2"-16)

* Not efficient: Small numbers have many zeros

after radix points
+1/10 0.0001100110011[0011]..2

IEEE Floating point

* |t’s a standard (convention)
— A group of people get together in the 80s to pick a
convention as the standard
* Driven by numerical concerns
— Nice standards for rounding, overflow, underflow
— Hard to make fast in hardware

* Numerical analysts predominated over hardware
designers in defining standard

FP: taking inspiration from scientific
notation

M -10°

Mantissa or significand

* |In normalized form, 1 <=M < 10

— Why normalizing it?
* The most compact way of writing a real number
* Normalized form cannot represent O!

Floating point representation

sign bit
(=1) -M -2°F
encodes E, but not encodes M, but not
identical to E identical to M
5|ngI.e. s |exp (8-bit) frac (23-bit)
precision

Floating point: normalized encoding

s |exp (8-bit) frac (23-bit) (_1)S - M - 25

* When: exp # 000...0 and exp # 111...1
e E = exp—Dbias

8-bit unsigned Constant, 127
— Range of E: [-126, 127]
e M = 1.frac

— Range of M: [1, 2) (normalized)

FP: normalized encoding

0 slexp (8-bit) |frac (23-bit)

(cannot represent)

|

smallest? 2"d |argest?
0](00....1 |00............. 0 0(11....0 |11.............. 0
- _12 104
x=2"" y=2
precision?
— largest?

0/00....1 |00............. 1 8 104
- x+27% y=2"-2

Floating point: de-normalized encoding

S

exp (8-bit)

frac (23-bit)

* When: exp = 000...0
e E =-126

e M = 0.frac
— Range of M: [0, 1)
e What's zero like?

— 0000...000
— 1000...000

(=1) - M -2°F

Floating point: denormalized

normalized range
/de—normalized rang\

R

0

e Smallest de-normalized value?

2'149 0(00..100............. 1

* How about precision?
— Fixed at 2%

Floating point: special values

s |lexp (11111111) |frac (23-bit)

* When:exp=111..1

® 0:exp=111..1, frac=000..0

— Operation that overflows
— E.g., 1.0/0.0=-1.0/-0.0 =+, 1.0/-0.0 = -0
* NaN:exp=111..1, frac#000..0

— Not-a-Number (NaN)
— E.g., sqrt(—1), o© — o0, 00 x 0

floating point “floats”

e “floating” as radix point is not at a fixed position

fixed point

l l 2715

-2715 i
|dentical precision 1/(2/-15)

/ -0+0 /
Precision drops as

. . 128 104
magnitude becomes bigger highest precision 2A-149 Phmaang |

Adjacent floats have adjacent bit representations

Single, double precision

exp

frac

1

8-bits

23-bits

S

exp

frac

1

* Single precision

11-bits

52-bits

— highest precision: 27-149
— Highest magnitude: = 22128
* Double precision
— highest precision: 27(-52-1022) = 2/(-1074)
— Highest magnitude: = 221025

Floating point operations

e Addition, subtraction, multiplication, division etc.

* FP Caveats:
— Invalid operation: 0/0, sqrt(-1), co+c
— Divide by zero: x/0—>
— Overflows: result too big to fit
— Underflows: O < result < smallest denormalized value
— Inexact: round it!

Why divide by zero = «?

* Allow a calculation to continue and produce a
valid result

 Example:

1
vl R% R»% Parallel resistance = 1
R1 T R2

If R1 or R2 is O, overall resistance should be O

Rounding: round-to-even

e Default Rounding Mode

* Decimal examples:

7.8949999 7.89
7.8950001 7.90
7.8950000 7.90
7.8850000 7.88

(Less than half way)
(Greater than half way)
(Half way—round up)
(Half way—round down)

Round-to-even: binary numbers

* Example: Round to nearest 1/4

sy Jrounded | action

10.00011;

10.00110;

10.001002

10.10100;

Floating point addition

Commutative? x+y == y+x?
Associative? (x+y)+z = x + (y+z)?

— Overflow:

(3.14+1el10)-1el10 = O
3.144(1el0-1e10) = 3.14

— Rounding

Every number has an additive inverse?

— Yes except for o and NaN

Monoticity? a =2 b = a+c 2 b+c?

Floating point multiplication

Commutative? x* y == y*x?
Associative? (x*y)*z = x * (y*z)?
— Overflow:

(1e20*1e20) *1e-20=1nf,
1e20* (1e20*1e-20)=1e20

— Rounding
(X+y)*z = x*z + y*z?

— 1e20* (1e20-1e20)=0.0, 1e20*1e20 -
1e20*1e20 =NaN

Monoticity? a>b = a*c > b*c?

Floating point in real world

e Storing time in computer games as a FP?

Precision diminishes as time gets bigger

m Time value FP precision Time precision

1 sec 1.19E-07 119 nanoseconds
100 ~1.5 min 7.63E-06 7.63 microseconds
10 000 ~3 hours 0.000977 .976 milliseconds

1000 000 ~11 days 0.0625 62.5 milliseconds

Floating point in the real world

Using floating point to measure distances

1 meter 1.19E-07 Virus
100 100 meter 7.63E-06 red blood cell
10 000 10 km 0.000977 toenail thickness
1000 000 .16x earth radius 0.0625 credit card width

Table source: Random ASCI|

Floating point trouble

 Comparing floats for equality is a bad idea!

float f = 0.1;
while (f 1= 1.0) {
f+=0.1;

J

Floating point trouble

* Never count using floating points

count = 0;
for (floatf=0.0; f<1.0; f +=0.1) {
count++;

J

Floating point summary

* Floating points are tricky
— Precision diminishes as magnitude grows
— overflow, rounding error

 Many real world disasters due to FP trickiness

— Patriot Missile failed to intercept due to 0.1
rounding error (1991)

— Ariane 5 explosion due to overflow in converting
from double to int (1996)

