DSM and Graph Computation Frameworks

Jinyang Li

(GraphLab slides from Gonzalez’ OSDI talk)
Distributed Computation

Distributed computation in the 90s focused on the distributed shared memory model.
Distributed shared memory

Goal:

• Write any distributed computation the way you’d write a single-machine multi-threaded computation
Example: adding two arrays

```c
float a[1<<30];
float b[1<<30];
float c[1<<30];

void addChunk(thread_id idx)
{
    long start = (1 << 20) * idx;
    for (int i = start; i < start+(1<<20); i++ ) {
        c[i] = a[i] + b[i];
    }
}

void main()
{
    //launch 1024 threads, each invoking function addChunk
    launchThreads(1024, addChunk);
}
```
Distributed shared memory enabled distributed multi-threading

distributed memory
float a[1<<30]
float b[1<<30]
float c[1<<30]

Load
Store
Advantages of the DSM model

• Familiar programming model
 – shared variables, locks.

• General purpose
 – Any type of computation can be supported
 • unlike MapReduce, Spark
 – Language agnostic

• Allow re-use of existing apps and library written for single machine
Supporting DSM: conventional approach

Each page in the address space is assigned to a different node as “owner”.

- 0-FFFFF
- 10000-1FFFFF
- 200000-2FFFFF

Diagram showing the allocation of pages to different nodes.
for (i = start; i < start+(1<<20); i++) {
 c[i] = a[i] + b[i];
}
Supporting DSM: conventional approach

- Thread running on server-1
 - `mov 0x100000, %rax`
 - ...

Load instruction causes server-1’s hardware to take a page fault

Server-1’s DSM runtime handles fault by fetching page from server-2, fix permission (only one page is writable)

Server-1’s hardware retries instruction
DSM challenges

• Memory consistency model
 – What should a read observe?

• Performance
 – Is it fast? Is it scalable?
Memory consistency affects program correctness

- Will both threads print “yes”?
 - under sequential consistency?
 - under Go’s memory model?

```c
x = 1
if y == 0 {
    print “yes”
}
y = 1
if x == 0 {
    print “yes”
}
```
Munin’s memory model

• Release consistency (RC)
 – Weaker than sequential consistency

• Key idea:
 – Access of shared data are commonly protected by synchronization primitives.
 – Sync primitives: Acquire (aka Lock), Release (aka Unlock)

• RC is a partial order:
 – All sync primitives are totally ordered
 – With a thread, the ordering of ordinary memory access w.r.t. synchronization primitive must be preserved
Why Release Consistency

• Release consistency is more efficient to implement
• A server’s writes need not be visible to others until the next synchronization primitive
How RC addresses false sharing

• A main DSM challenge: false sharing

```java
for (i = 0; i < 100; i++) {
    x++;
}
print x+y;
```

```java
for (i = 0; i < 100; i++) {
    y++;
}
print x+y;
```

x, y are in the same page

False sharing leads to ping-ponging and write-amplification:
• To write one-byte to x, S1 transfers whole page from S2, invalidates the page at S2.
• To write one-byte to y, S2 transfers the page back from S1, invalidates the page at S1, and so on.
How RC addresses false sharing

• A main DSM challenge: false sharing

False sharing leads to ping-ponging and write-amplification:
• To write one-byte to x, S1 transfers whole page from S2, invalidates the page at S2.
• To write one-byte to y, S2 transfers the page back from S1, invalidates the page at S1, and so on.
How RC addresses false sharing

• A main DSM challenge: false sharing

False sharing leads to ping-ponging and write-amplification:
• To write one-byte to x, S1 transfers whole page from S2, invalidates the page at S2.
• To write one-byte to y, S2 transfers the page back from S1, invalidates the page at S1, and so on.
Idea: Write diffs + Release Consistency

• To write, transfer a copy, but do not invalidate other writable-copies of the page

• Send out and merge diffs on release
Release Consistency

server-1

Acquire(Lx)
for (i = 0; i < 100; i++) {
 x++;
}
Release(Lx)
print x+y;

server-2

Acquire(Ly)
for (i = 0; i < 100; i++) {
 y++;
}
Release(Ly)
print x+y;

• What’s the possible outcomes under Munin?
 – <100, 100> <200, 100> <100, 200> <200, 200>
• What’s possible after adding new acquires/release?
• How many network transfers?
DSM’s failure story

• DSMs rely on checkpointing to recover from failure.
• Periodically checkpoint all servers’ state.
• On recovery, load from last checkpoint and resume
Why no DSM now?

• Masking the difference between distributed and single-machine computation is too hard
• Difference in memory fetch latency is huge
 – 100 ns vs. 10us~1 ms
• Programs that make sense in single-machine setting are too slow on DSM
An example computation that’s difficult for DSM: PageRank

\[R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j] \]

- Rank of node \(i \)
- Weighted sum of neighbors’ ranks
- Iterate until convergence
Difficulty of DSM

\[R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j] \]

- 2 parallelization strategies:
 - Each thread calculates disjoint \(R[i] \), need to perform random (remote) reads for \(R[j] \) → too slow
 - Each thread works on disjoint \(R[j] \), computes \(W_{j,i} \times R[j] \), increments \(R[i] += W_{j,i} \times R[j] \), need to perform synchronized remote writes for \(R[i] \) → too slow
Distributed computation in the 90s focused on the distributed shared memory model.
The **Graph-Parallel Abstraction**

- A user-defined **Vertex-Program** runs on each vertex
- **Graph** constrains interaction along edges
 - Using messages (e.g., **Pregel** [PODC’09, SIGMOD’10])
 - Through shared state (e.g., **GraphLab** [UAI’10, VLDB’12])
- **Parallelism**: run multiple vertex programs simultaneously
The Pregel Abstraction

Vertex-Programs interact by sending messages.

Pregel_PageRank(i, messages) :
// Receive all the messages
total = 0
foreach(msg in messages) :
 total = total + msg

// Update the rank of this vertex
R[i] = 0.15 + total

// Send new messages to neighbors
foreach(j in out_neighbors[i]) :
 Send msg(R[i] * wi_j) to vertex j

Malewicz et al. [PODC’09, SIGMOD’10]
The GraphLab Abstraction

Vertex-Programs directly **read** the neighbors state

```plaintext
GraphLab_PageRank(i)

// Compute sum over neighbors
total = 0
foreach (j in in_neighbors(i)):
    total = total + R[j] * w_{ji}

// Update the PageRank
R[i] = 0.15 + total

// Trigger neighbors to run again
if R[i] not converged then
    foreach (j in out_neighbors(i)):
        signal vertex-program on j
```

Low et al. [UAI’10, VLDB’12]
Challenges of High-Degree Vertices

Sequentially process edges

Sends many messages (Pregel)

Touches a large fraction of graph (GraphLab)

Edge meta-data too large for single machine

Synchronous Execution prone to stragglers (Pregel)
Communication Overhead for High-Degree Vertices

Fan-In vs. Fan-Out
Pregel Message Combiners on Fan-In

- User defined **commutative associative** (+) message operation:
Pregel Struggles with **Fan-Out**

- **Broadcast** sends many copies of the same message to the same machine!
Fan-In and Fan-Out Performance

• PageRank on synthetic Power-Law Graphs
 – Piccolo was used to simulate Pregel with combiners

![Graph showing Total Communication (GB) vs. Power-Law Constant α]

More high-degree vertices
GraphLab Ghosting

• Changes to master are synced to ghosts
GraphLab Ghosting

- Changes to **neighbors** of **high degree vertices** creates substantial network traffic
Fan-In and Fan-Out Performance

- PageRank on synthetic Power-Law Graphs
- GraphLab is undirected

Graph showing total communication (GB) vs. Power-Law Constant alpha with lines for Pregel Fan-In, GraphLab Fan-In/Out, and Pregel Fan-Out. The graph indicates a decrease in total communication as the Power-Law Constant alpha increases, with a note that more high-degree vertices are present.
Graph Partitioning

- Graph parallel abstractions rely on partitioning:
 - Minimize communication
 - Balance computation and storage
Random Partitioning

- Both GraphLab and Pregel resort to random (hashed) partitioning on natural graphs.

\[
\mathbb{E}\left[\frac{|Edges\ Cut|}{|E|} \right] = 1 - \frac{1}{p}
\]

10 Machines \(\rightarrow\) 90% of edges cut
100 Machines \(\rightarrow\) 99% of edges cut!
PowerGraph at a high level

• How to partition graph-computation in the face of high-degree vertices?

• Contributions:
 – GAS programming model
 • allows a single high-degree vertex to be parallelized
 – Vertex partitioning
 • assign edges (instead of nodes) to machines
A Common Pattern for Vertex-Programs

GraphLab_PageRank(i)

// Compute sum over neighbors
total = 0
foreach (j in in_neighbors(i)):
 total = total + R[j] * w_{ji}

// Update the PageRank
R[i] = 0.1 + total

// Trigger neighbors to run again
if R[i] not converged then
 foreach (j in out_neighbors(i))
 signal vertex-program on j
GAS Decomposition

Gather (Reduce)
Accumulate information about neighborhood

User Defined:
- Gather\((Y)\) $\rightarrow \Sigma$
- $\Sigma_1 \oplus \Sigma_2 \rightarrow \Sigma_3$

Apply
Apply the accumulated value to center vertex

User Defined:
- Apply\((Y, \Sigma)\) $\rightarrow Y'$

Scatter
Update adjacent edges and vertices.

User Defined:
- Scatter\((Y)\) \rightarrow
PageRank in PowerGraph

\[R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j] \]

PowerGraph_PageRank(i)

- **Gather** (j → i) : return \(w_{ji} \cdot R[j] \)
- **sum** (a, b) : return a + b;

Apply (i, Σ) : \(R[i] = 0.15 + \Sigma \)

Scatter (i → j) :
 - if \(R[i] \) changed then trigger \(j \) to be **recomputed**
Distributed Execution of a PowerGraph Vertex-Program

Gather

Apply

Scatter
Minimizing Communication in PowerGraph

Communication is linear in the number of machines each vertex spans.

A vertex-cut minimizes machines each vertex spans.
New Approach to Partitioning

• Rather than cut edges:

 For any edge-cut, one can directly construct a vertex-cut which requires strictly less communication and storage.

 • Must synchronize a single vertex
Constructing Vertex-Cuts

• **Evenly** assign **edges** to machines
 – Minimize machines spanned by each vertex

• Assign each edge **as it is loaded**
 – Touch each edge only once

• Propose three **distributed** approaches:
 – *Random* Edge Placement
 – *Coordinated Greedy* Edge Placement
 – *Oblivious Greedy* Edge Placement
Random Edge-Placement

- Randomly assign edges to machines

Balanced Vertex-Cut
- Y Spans 3 Machines
- Z Spans 2 Machines
- Not cut!
Greedy Edge Placements

• Place edges on machines which already have the vertices in that edge.
Greedy Edge Placements

• **De-randomization** → greedily minimizes the expected number of machines spanned

• **Coordinated** Edge Placement
 – Requires coordination to place each edge
 – Slower: higher quality cuts

• **Oblivious** Edge Placement
 – Approx. greedy objective without coordination
 – Faster: lower quality cuts
Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Cost

Construction Time

Oblivious balances cost and partitioning time.
Greedy Vertex-Cuts Improve Performance

Runtime Relative to Random

- Random
- Oblivious
- Coordinated

Greedy partitioning improves computation performance.
Summary

• DSM: use the same general single-machine model for distributed computation
 – use release consistency to improve performance
 – still hard to hide the performance difference between local and remote memory

• Graph Framework: “shared memory”, but specialized for graph computation