MapReduce
Spark

Some slides are adapted from those of Jeff Dean and Matei Zaharia
What have we learnt so far?

• Distributed storage systems
 – consistency semantics
 – protocols for fault tolerance
 • Paxos, Raft, Viewstamp
• Transactional Online processing
 – distributed transactions
• Today: Offline batch processing
Why distributed computations?

• How long to sort 1 TB on one computer?
 – One computer can read ~50MB from disk
 – Takes 5.5 hours!

• Google indexes 60 trillion web pages
 – 60×10^{12} pages \times 10KB/page = 600 PB

• Large Hadron Collider is expected to produce 15 PB every year!
Solution: use many nodes!

• Data Centers at Amazon/Facebook/Google
 – Hundreds of thousands of PCs connected by high speed LANs

• Cloud computing
 – Any programmer can rent nodes in Data Centers for cheap

• The promise:
 – 1000 nodes ➔ 1000X speedup
Distributed computations are difficult to program

- Sending data to/from nodes
- Coordinating among nodes
- Recovering from node failure
- Optimizing for locality
- Debugging

Same for all problems
The world before MapReduce comes along

• Dominant philosophy in systems research
 – programming many machines should be “the same” that of a single multi-core machine
 – distributed shared memory
 – automatic parallelization of existing programs

• MPI for high performance computing
 – a collection of communication/synchronization primitives to simplify message passing

• No systems handle failures
MapReduce

• A programming model for large-scale computations
 – Process large amounts of input, produce output
 – No side-effects or persistent state (unlike file system)

• MapReduce is implemented as a runtime library:
 – automatic parallelization
 – load balancing
 – locality optimization
 – handling of machine failures
MapReduce design

• Input data is partitioned into M splits
• **Map**: extract information on each split
 – Each Map produces R partitions
• **Shuffle and sort**
 – Bring M partitions to the same reducer
• **Reduce**: aggregate, summarize, filter or transform
• Output is in R result files
More specifically…

• Programmer specifies two methods:
 – map(k, v) → <k', v'>*
 – reduce(k', <v'>*) → <k', v'>*

• All v' with same k' are reduced together

• Usually also specify:
 – partition(k', total partitions) -> partition for k’
 • often a simple hash of the key
 • allows reduce operations for different k’ to be parallelized
Example: Count word frequencies in web pages

• Input is files with one doc per record

• Map parses documents into words
 – key = document URL
 – value = document contents

• Output of map:

 “doc1”, “to be or not to be” → “to”, “1”
 “be”, “1”
 “or”, “1”
 …
Example: word frequencies

- **Reduce**: computes sum for a key

 - `key = “be”
 values = “1”, “1”
 \[\text{“2”} \]

 - `key = “not”
 values = “1”
 \[\text{“1”} \]

 - `key = “or”
 values = “1”
 \[\text{“1”} \]

 - `key = “to”
 values = “1”, “1”
 \[\text{“2”} \]

- **Output of reduce saved**

 - “be”, “2”
 - “not”, “1”
 - “or”, “1”
 - “to”, “2”
Example: Pseudo-code

Map(String input_key, String input_value):
 //input_key: document name
 //input_value: document contents
 for each word w in input_values:
 EmitIntermediate(w, "1");

Reduce(String key, Iterator intermediate_values):
 //key: a word, same for input and output
 //intermediate_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));
MapReduce is widely applicable

- Distributed grep
- Document clustering
- Web link graph reversal
- Detecting duplicate web pages
- ...
MapReduce implementation

- Input data is partitioned into M splits
- **Map**: extract information on each split
 - Each Map produces R partitions
- **Shuffle and sort**: Bring M partitions to the same reducer
- **Reduce**: aggregate, summarize, filter or transform
- Output is in R result files, stored in a replicated, distributed file system (GFS).
MapReduce scheduling

• One master, many workers
 – Input data split into M map tasks
 – R reduce tasks
 – Tasks are assigned to workers dynamically
MapReduce scheduling

• Master assigns a map task to a free worker
 – Prefers “close-by” workers when assigning task
 – Worker reads task input (often from local disk!)
 – Worker produces R local files containing intermediate k/v pairs

• Master assigns a reduce task to a free worker
 – Worker reads intermediate k/v pairs from map workers
 – Worker sorts & applies user’s Reduce op to produce the output
Parallel MapReduce

- Input data
- Master
- Partitioned output
WordCount Internals

- Input data is split into M map jobs
- Each map job generates in R local partitions
WordCount Internals

- Shuffle brings same partitions to same reducer

```
"to","1","1"
"be","1"
"not","1"
"or","1"
```

R local partitions

```
"do","1"
"to","1","1"
"be","1","1"
"not","1","1"
"or","1"
```

R local partitions
WordCount Internals

• Reduce aggregates sorted key values pairs

- “do”, “1”
- “to”, “1”, “1” → “do”, “1”, “1”
- “be”, “1”, “1” → “be”, “2”
- “not”, “1”, “1”
- “or”, “1” → “not”, “2”, “1”
The importance of partition function

- \texttt{partition}(k', \text{total partitions}) \rightarrow \text{partition for } k'
 - e.g. \texttt{hash(k') } \% R

- What is the partition function for sort?
Load Balance and Pipelining

- Fine granularity tasks: many more map tasks than machines
 - Minimizes time for fault recovery
 - Can pipeline shuffling with map execution

<table>
<thead>
<tr>
<th>Process</th>
<th>Time ------------------------------</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Program</td>
<td>MapReduce() ... wait ...</td>
</tr>
<tr>
<td>Master</td>
<td></td>
</tr>
<tr>
<td>Worker 1</td>
<td></td>
</tr>
<tr>
<td>Worker 2</td>
<td></td>
</tr>
<tr>
<td>Worker 3</td>
<td>Assign tasks to worker machines...</td>
</tr>
<tr>
<td>Worker 4</td>
<td></td>
</tr>
</tbody>
</table>

- Map 1
- Map 2
- Map 3
- Read 1.1
- Read 1.2
- Read 1.3
- Read 2.1
- Read 2.2
- Read 2.3
- Reduce 1
- Reduce 2
Fault tolerance

- What are the potential failure cases?
 - Lost packets
 - Temporary network disconnect
 - Servers crash and rebooted
 - Servers fail permanently (disk wipe)
Fault tolerance via re-execution

On master failure:
• Lab3 does not require handing master failure

On worker failure:
• Re-execute in-progress map tasks
• Re-execute in-progress reduce tasks
• Task completion committed through master

Is it possible a task is executed twice?
How to handle stragglers

• Ideal speedup on N Machines?
• Why no ideal speedup in practice?
• Straggler: Slow workers drastically increase completion time
 – Other jobs consuming resources on machine
 – Bad disks with soft errors transfer data very slowly
 – Weird things: processor caches disabled (!!)
 – An unusually large reduce partition

• Solution: Near end of phase, spawn backup copies of tasks
 – Whichever one finishes first "wins"
MapReduce Sort Performance

• 1TB (100-byte record) data to be sorted
• 1700 machines
• M=15000 R=4000
MapReduce Sort Performance

When can shuffle start?

When can reduce start?
Big Data Computation
Spark’s motivation

• More Complex Analytics
 – multi-stage processing
 • iterative machine learning
 • iterative graph processing

• Better performance
 – lots of application’s dataset can fit in the aggregate memory of many machines
What MapReduce lacks

• Efficient data sharing primitive for multi-staging processing
 – output of the previous stage is stored on GFS
 – input of the current stage is read from GFS
Multi-stage MapReduce job

Slow due to replication and disk I/O, but necessary for fault tolerance
Spark’s goal

10-100x faster than network/disk, but how to get FT?
Spark’s solution

- Restricted form of distributed shared memory
 - Immutable, partitioned collections of records
- Can only be built through coarse-grained deterministic transformations (map, filter, join, ...)
- Efficient fault recovery using lineage
 - Log one operation to apply to many elements
 - Recompute lost partitions on failure
RDD recovery

10-100x faster than network/disk, but how to get FT?
Spark API

- **DryadLINQ-like API in Scala language**

<table>
<thead>
<tr>
<th>Method</th>
<th>Type Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map(f : T ⇒ U)</code></td>
<td><code>RDD[T] ⇒ RDD[U]</code></td>
</tr>
<tr>
<td><code>filter(f : T ⇒ Bool)</code></td>
<td><code>RDD[T] ⇒ RDD[T]</code></td>
</tr>
<tr>
<td><code>flatMap(f : T ⇒ Seq[U])</code></td>
<td><code>RDD[T] ⇒ RDD[U]</code></td>
</tr>
<tr>
<td><code>sample(fraction : Float)</code></td>
<td><code>RDD[T] ⇒ RDD[T]</code> (Deterministic sampling)</td>
</tr>
<tr>
<td><code>groupByKey()</code></td>
<td><code>RDD[(K, V)] ⇒ RDD[(K, Seq[V])]</code></td>
</tr>
<tr>
<td><code>reduceByKey(f : (V, V) ⇒ V)</code></td>
<td><code>RDD[(K, V)] ⇒ RDD[(K, V)]</code></td>
</tr>
<tr>
<td><code>union()</code></td>
<td><code>(RDD[T], RDD[T]) ⇒ RDD[T]</code></td>
</tr>
<tr>
<td><code>join()</code></td>
<td><code>(RDD[(K, V)], RDD[(K, W)]) ⇒ RDD[(K, (V, W))]</code></td>
</tr>
<tr>
<td><code>cogroup()</code></td>
<td><code>(RDD[(K, V)], RDD[(K, W)]) ⇒ RDD[(K, (Seq[V], Seq[W]))]</code></td>
</tr>
<tr>
<td><code>crossProduct()</code></td>
<td><code>(RDD[T], RDD[U]) ⇒ RDD[(T, U)]</code></td>
</tr>
<tr>
<td><code>mapValues(f : V ⇒ W)</code></td>
<td><code>RDD[(K, V)] ⇒ RDD[(K, W)]</code> (Preserves partitioning)</td>
</tr>
<tr>
<td><code>sort(c : Comparator[K])</code></td>
<td><code>RDD[(K, V)] ⇒ RDD[(K, V)]</code></td>
</tr>
<tr>
<td><code>partitionBy(p : Partitioner[K])</code></td>
<td><code>RDD[(K, V)] ⇒ RDD[(K, V)]</code></td>
</tr>
<tr>
<td><code>count()</code></td>
<td><code>RDD[T] ⇒ Long</code></td>
</tr>
<tr>
<td><code>collect()</code></td>
<td><code>RDD[T] ⇒ Seq[T]</code></td>
</tr>
<tr>
<td><code>reduce(f : (T, T) ⇒ T)</code></td>
<td><code>RDD[T] ⇒ T</code></td>
</tr>
<tr>
<td><code>lookup(k : K)</code></td>
<td><code>RDD[(K, V)] ⇒ Seq[V]</code> (On hash/range partitioned RDDs)</td>
</tr>
<tr>
<td><code>save(path : String)</code></td>
<td>Outputs RDD to a storage system, e.g., HDFS</td>
</tr>
</tbody>
</table>
Example: log mining

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split("\t")(2))
messages.persist()

messages.filter(_.contains("foo")).count
messages.filter(_.contains("bar")).count
```

Result: scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)
Fault recovery

RDDs track the graph of transformations that built them (their *lineage*) to rebuild lost data.

E.g.: `messages = textFile(...).filter(_.contains("error")) .map(_.split('t')(2))`
Another example: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to
 \[\sum_{i \in \text{neighbors}} \frac{\text{rank}_i}{|\text{neighbors}_i|} \]

```scala
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
    ranks = links.join(ranks).flatMap {
        (url, (links, rank)) =>
        links.map(dest => (dest, rank/links.size))
    }.reduceByKey(_ + _)  
}  
```
Optimizing Placement

Links (url, neighbors)

Ranks₀ (url, rank)

join

Contribs₀

reduce

Ranks₁

join

Contribs₂

reduce

Ranks₂

...

links & ranks repeatedly joined

Can co-partition them (e.g. hash both on URL) to avoid shuffles

Can also use app knowledge, e.g., hash on DNS name

\[
\text{links} = \text{links}.\text{partitionBy}(\text{new URLPartitioner}())
\]
PageRank Optimization

![Bar chart showing time per iteration for different methods: Hadoop, Basic Spark, and Spark + Controlled Partitioning. The chart indicates that Spark + Controlled Partitioning has the lowest time per iteration at approximately 23 seconds, followed by Basic Spark at 72 seconds, and Hadoop at 171 seconds.](image-url)
Summary

• MapReduce
 – The interface Map + Reduce let programmers write applications that can be automatically parallelized/distributed
 – Re-execution to handle failure / stragglers

• Spark
 – Enable multi-stage MR jobs to pass data via memory
 – RDD handles fault-tolerance at a coarse-granularity by tracking lineage.