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Abstract datacenter delays of up to hundreds of milliseconds.

Currently, users of geo-distributed storage systems face Studies done at Google and Amazon show that Web
a hard choice between having serializable transactionsusers are sensitive to latency [49]: even a 100ms in-
with high latency, or limited or no transactions with low crease in latency causes a measurable revenue losses. It
latency. We show that it is possible to obtain both seri-is therefore important to reduce the latency of transac-
alizable transactions and low latency, under two condi-tions as much as possible. A common way to achieve
tions. First, transactions are known ahead of time, perdow-latency is to drop serializability [31] and offer re-
mitting an a priori static analysis of conflicts. Second, laxed consistency (e.g. causal+ [43, 44], PSI [53],
transactions are structuredteansaction chaingonsist-  Red/Blue [42], HAT [12]). Many systems with weak-
ing of a sequence of hops, each hop modifying data atened consistency also have other limitations: some
one server. To demonstrate this idea, we built Lynx, systems require all data to be replicated at all data-
a geo-distributed storage system that offers transactiorcenters [42—44], while others [42,53] lack a scalable de-
chains, secondary indexes, materialized join views, andsign within a datacenter.
geo-replication. Lynx uses static analysis to determine |t yyms out that giving up serializability for low-
if each hop can execute separately while preserving|atency is unnecessary. This claim is predicated on two
serializability—if so, a client need wait only for the first - ohservations. First, typical Web applications run a pre-
hop to complete, where this hop is local to the client’s yefined set of transactions, so it is possible to perform
datacenter. To evaluate Lynx, we built three applications:, gjopal static analysis of its transactions before execu-
an auction service, a Twitter-like microblogging site and iy {0 find opportunities to execute them quickly with-
a social networking site. These applications successfullyoyt yiolating serializability. Second, one can decompose
use chains to achieve low latency operation and good, general (geo-distributed) transaction into a sequence of
throughput. hops, each modifying data in only one server or in one
. datacenter. With the aid of static analysis, one can safely
1 Introduction run these ho : : i
ps as separate transactions while preserving

Many Web applications rely ogeo-distributedstor-  serializability, and return quickly to clients after thesfir
age systems, such as Cassandra [2], Megastore [13] anfop (often in the local datacenter).

Spanner [25]. These systems hold the promise of both

high availability (by replicating data across datacenters Using these ideas we built Lynx, a geo-distributed

storage system that provides serializability with low la-

?r;(;lelg\t/v rlztg:;?gggyglsazpegﬁ?gsascé?? tzglléetT;SgéA u.ii' tency. To scale, Lynx partitions tables into many shards,
u u ge sy ! allz asfl each possibly replicated in a subset of datacenters. Lynx

Wh,'[Ch ngUp Ta?y_lreadlwrge operations tcL)J efns:lre Ctoln'provides a new primitive calletiansaction chairor sim-
e vt oy Y chin A chin s a seduence of ops, each acess
9 P [15] ing data on one server, such that all hops exeeute

expensive for a geo-distributed setting, incurring inter- I :

P 9 9 9 actly onceor none of them do, similar to the notion of a
Permission to make copies of part or all of th_is work for peai(_Dr saga [33]. Applications submit transactions to Lynx as
classroom use is granted provided that copies are not mad&sor  opaing- | ynx also uses chains internally to update sec-
tributed for profit or commercial advantage and that copiear lthis . L T .
notice and the full citation on the first page. Copyrightstford-party ondary indexes, materialized joins, and geo-distributed

components of this work must be honored. For other usesacoitite replicas.
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per hop—while preserving serializability of the entire ftems (primary_key=item._id) Bids (primary_key=bid_id)
chain. The analysis uses the theory of transaction chop| "™ See™™ P | ioter| puwe | | bic_id| bidder|item bid_price
ping [51] to construct a graph based on the operations|sss | nikonnso| 666 | 123 | $200 1 |s49 345 [$100
in the transactions. Lynx incorporates two techniques to [
enhance the opportunity for piecewise execution. First,
Lynx lets programmers provide annotations about the
commutativity of pairs of hops that would otherwise be
considered to conflict. Second, when chains are exe-
cuted piecewise, Lynx ensuresdgin ordering if chains
T, andT, start at the same server, amdstarts before
T,, thenT; executes befor& at every server where they
both execute. This property eliminates many conflicts in
the internal chains Lynx uses for derived tables.

Lynx has some limitations. First, it does not reduce ysing chains. API details are given in Section 5.1.
the total execution time of the chain; rather, Lynx can re-  \ye illustrate how applications can use Lynx with an
turn control to the application after the chain’s first hop. example from RuBIS [1], a simple online auction service
This feature does not benefit all applications, but we be-mggeled after eBay. RuBIS stores data in many tables;
lieve that it helps many Web applications where users o are shown in Figure 1. THéemstable stores each
interact—for instance, by sending friendship requests,item on sale with its item id, current highest bid, and
posting messages on walls, etc. These operations argser who placed that bid. THRidstable stores item ids
well served by a chain whose first hop modifies the user'sipat received a bid, the bid amounts, and the bidders.
own data, while later hops modify other users’ data in The RuBIS developers denormalized the schema to
the background. The second limitation is that Lynx Can'duplicate the highest bid in tHeemstable, to improve

|n0t exe.cu;e all chams ?lepewse :co aitain low f'r:SF'hOP the performance of a common operation: display the cur-
atency: the static analysis may force some chains to, ., highest bid price of an item. When a user places a

gxehcuteL as ddlstnbuted transactions. TheI third !lmltat|0n new bid, RuBIS must insert the bid inBidsand update
is that Lynx does not guarantee external consistency Ohihe corresponding high price Itemsin the same trans-

order-preservmg serlallfzellblrl]lty [35&57,]' but tohcompen— action to ensure consistency. With Lynx, programmers
sate Lynx provides useful chain ordering mechanisms. . it 5,ch a transaction as a chain (Figure 1, bottom).

Using Lynx, we built three Web applications: an auc- .
. . . i Lynx supportglerived tables-tables whose contents
tion service ported from the RUBIS benchmark [1,10]; a : :
are automatically derived from other tables—for speed-

Twitter-like microblogging service; and a Facebook-like . ! )
) . . o ing up queries. There are three types of such tables:
social networking site. These applications were easy to . o RN
) . ) ) . .” “secondary indexes, materialized join views, and geo-
build using Lynx’s API, and they benefit from piecewise : .
) . . .. replicas. For example, RuBIS has a secondary index
chains. Experiments running on three EC2 availability

) c . on the itemid of Bids, to quickly find the bidding his-
regions show that these applications achieve low Iatencytory of an item. Derived tables are themselves sharded

with good throughput. Lynx also scales well: as we in- . . : -
ccording to their key (secondary index key, join key,
crease the number of Lynx servers per datacenter from £ . . .
t0 8, chain throughput grows by more than 6 times or replicated primary key) and spread a_cross.machmes.
' ' When base tables change, Lynx automatically issues sub-
2  Qverview chains to update the derived tables. These sub-chains are

Setting. Lynx is a geo-distributed storage system for ca_\lled_system chainsvhile user chainsre written by ap-
plication developers.

large Web applications, such as social networks, web- Bef lication deol L f
based email, or online auctions. Lynx scales by parti- efore application deployment, Lynx: periorms a

tioning data into many shards spread across machine§.tatic analysis of all applicat_i(_)n Ch"’.‘ins to determines if
Each shard can be geo-replicated at many datacenterg_,ynx carrll_lexecute_eacﬂ chsqu_nscep:w;e—oge_ hopbatha_
based on requirements of locality, durability, and avail- time—w I'I ete)lnsurlng_t elentlre chain and its subchains
ability. Unlike other systems [42—44], Lynx does not re- are serializable as a single transaction.

quire that all datacenters replicate all data, so Lynx canFeatures.In summary, Lynx has the following features:

have many datacenters with low replication cost. « Serializability Given an application and its chains,
Data model and usage Application developers define Lynx ensures that concurrent execution of those
a set of schematized relational tables [25] sharded based chains preserve serializability.

on their primary key. Lynx provides general transactions  Low latency For chains that can be executed piece-
in the form of chains, and all operations are performed wise, applications can achieve low latency by having

Cute puppy 123 - - 2 123|345 | $200

Chain for placing a bid b

+ Insert bid b into Bids}—'

Figure 1: Example schema for a simple auction service and
a chain for placing the bid of a user.

» Read ltems[b.item_id]
« Update Items[b.item_id] if b.price is higher




Lynx return control after the first hop, which typically and, if not, avoids them by executing the chain as a dis-
executes in the local datacenter. To the best of ourtributed transaction. Thus, Lynx ensures the following:
knowledge, no prior geo-distributed storage system . gerializability. Chains are serializable as transactions.
provides both serializability and low latency.

« Derived tables Automatically updated secondary in- Restrictions. A chain has two restrictions. First,
dexes, materialized join tables, and geo-replicas speedpplication-initiated aborts can occur only at the first
up common application queries. hop of a chain (this is needed to implement all-or-

« Scalablity.Lynx scales with the number of machines nothing atomicity). Second, chains are static: each hop
in a datacenter and with the number of datacenters. €xecutes at a server that is known when the chain starts

m(needed to implement origin ordering). Not every trans-

action can be structured as a chain. Those that cannot
fcan be executed as a regular transaction in Lynx.

Transaction chains are the fundamental mechanis
underlying Lynx; we develop them fully in the next
two sections. Section 3 describes the properties o
chains. Section 4 explains how to ensure serializability Linked chains. Applications can link together multiple

of chains. chains so that they execute consecutively, like a chain of
] ) chains, where each chain individually satisfies the prop-
3 Transaction chains erties above. The set of linked chains may not be seri-

A transaction chain accesses data that is distributedalized as one transaction, but Lynx ensures the follow-
over many servers. A chain encodes a transadtias a  ing atomicity property: if chains are linked and the first
sequence of hopB=[ps ... pk] with each hopp; execut-  chain starts then the other chains eventually start. Like
ing at one server; servers can be at different datacenterfiops in a chain, linked chains can receive inputs from
and may repeat. A hop; may have input parameters previous chains, and all linked chains must be submitted
that depend on the output of earlier hops in the chain.  together.

It is desirable to execute a chapiecewisg where
hops are executed one after the other as separate trand- Providing serializability
actions. Such execution is efficient, because a hop is Web applications typically have an a priori known set
contained in a server, so it can be executed using a locabf transactions, permitting a global static analysis of the
transaction. Chains can also improve perceived applicaapplication to determine what chains can be executed
tion latency, as an application can just wait for its first piecewise while preserving serializability. If the analy-
hop. sis determines that executing a chain piecewise would
violate serializability, Lynx executes the chain as a dis-
tributed ACID transaction [15, 25], incurring higher la-
tency. Alternatively, the developer can remove the cycle
using annotations or linked chains, as we describe below.
, In what follows, we explain how the analysis works
* Inner ordering.  Hop pi;1 never executes be- (84.1), how to improve the chances for piecewise execu-

fore hopp;. tion (§4.2), how to cope with the lack of external consis-
* All-or-nothing atomicity: If the first hop of a chain  tency (84.3), and what limitations chains have (§4.4).

commits, then the other hops eventually commit as

well. (They may abort due to concurrency control, 4.1 Static analysis of chains

but in that case the system retries until they commit.) The analysis uses knowledge of the table schemas and

Moreover, if the first hop aborts then no hop com- the application chains, specifically the table accessed by

mits. Thus, the first hop determines the outcome of each hop of each chain and the type of access (read or

Guarantees.Chains have the following properties:

» Per-hop isolationEach hop is serializable w.r.t. other
hops in all chains. This is achieved efficiently by exe-
cuting a hop as a local transaction.

the chain. write). The analysis determines what chains can be exe-
« Origin ordering. If two chains T=[p;...] and cuted piecewise while preserving serializability.
T'=[p}...] start on the same server wifi executing The analysis is based on the theory of transaction
beforep;, thenp; executes beforp’j for everyp; and chopping, originally developed for breaking up large
pj that execute on the same server. transactions into smaller pieces in centralized database

When executed piecewise, chains might interleaveSYStéms [51].  The chopping algorithm constructs a
their execution. Say, if a chain has hops p, and  9raph, which we calSC-graph for a set of chopped
another chain has hop, p,, the system may execute {ransactions, where vertices represent transactiongiece
the hops in the ordeps, pj, p2,py. Lynx determines and edges represent a relationship between pieces. There

whether such interleavings are serializable (Section 4)ar€ two types of edges: S-edges connect vertices of the
same unchopped transaction, C-edges connect vertices

Lcalled simplyatomicityin the database community of different transactions if they access the same item
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Figure 3: SC-graph for a simple auction service (Figure 1)
with three types of chains: Tyig, Tadd, Treag- There are two
and an access is a write. ABC-cycleis a simple cy-  copies of Tyjg and Taqq to account for self-conflict. The
cle containing a C-edge and an S-edge (Figure 2). Itgraph has an SC-cycle involving two copies Ofpg.

is shown that serializability is assured if the SC-graph
has no SC-cycles [51]. Intuitively, an SC-cycle indicates

a non-serializable interleaving. Figure 2(a) allows the 4.2
problematic interleavindy 1, To 1, To2, Ts, T1,2.2

Improving chances for piecewise execution
When we naively apply the theory of transaction chop-
ping, we find little opportunity for piecewise execution,
because SC-cycles are everywhere! Below, we analyze
the problems and propose ways to avoid these cycles.

Naive construction of the SC-graph.Applying the the-
ory of transaction chopping directly, a chain corresponds
to a chopped transaction and its hops are the pieces. con
nected by S-edges. To obtain the C-edges in the SCUser chains. User chains can have spurious C-edges
graph, we consider potential conflicts between hops ofbecause the notion of conflict is coarse-grained, being
different chains. Static analysis cannot determine ex-based on table accesses. This problem is exacerbated
actly what data items a chain accesses (which rows); toby self-conflicts between instances of the same chain.
be conservative, if hops of different chains access theln Figure 3, Tyig modifies two tables, creating an SC-
same table and an access is a write, we add a C-edge béycle on its own instances. Closer inspection reveals
tween them. Since instances of the same chain may be ithat the hop “insert to Bids” inserts a row with a unique
conflict (if they update data), the SC-graph includes two id; this hop commutes with itself, so it does not self-
instances of every chain that updates diftar;read-only conflict. Developers can usanotationgo indicate the
chains, one instance suffices. We must also consider sysiop self-commutes, which removes the C-edge between
tem sub-chains caused by user chains (recall that systens instances, breaking the cycle. Other systems also ex-
chains are automatically created to update derived tablegloit commutativity [42, 50, 53], but in different ways.
when base tables change); we want these sub-chains to In other cases, there may be unnecessary S-edges: a
be serialized with the originating chain. A simple idea user chain may have hops that need not be serialized to-
is to combine a user chain and its sub-chains in the SCgether, but were placed in the same chain because they
graph: when a user chain hop modifies a base table, thgequire all-or-nothing atomicity. In that case, program-
is expanded into sub-chains that update derived tablegners can separate these hops into different chains and

Later, in Section 4.2, we improve on this simple idea.

As an example, consider the auction application fro

Section 2 (Figure 1), with the three chaifgiy for plac-

Treaq for browsing an itemTyiq has two hops, while the

There is an SC-cycle involving two instanceslgfy, so
this chain cannot safely execute piecewise.

2This creates a cycle in theerialization grapH57], whereT; pre-
cedesT, (asTy,; precededl, ;1 in the interleaving),T> precedess (as
T>2 precededs), andTs preceded (asTz precededy ).

3Two instances suffice, as SC-cycle with more than two ingsnc
implies an SC-cycle with only two instances.

execute them as linked chains (Section 3), which also

m provide all-or-nothing atomicity but avoid S-edges.

System chainsMany self-conflicts arise among the sys-
ing a bid, Tiem for adding an item to be auctioned, and tem sub-chains created by Lynx to update derived tables.
Figure 4 shows a one-hop user chain that modifies a
others have one hop. For simplicity, let us ignore the base table causing a system chain. Because a chain and
system chains. Figure 3 shows the resulting SC-graphits resulting system chains should be serialized together
as one transaction, we consider the combined chain in
the SC-graph. This chain unfortunately causes an SC-
cycle over its two instances, because of self-conflicts
(Figure 4) and these updates do not always commute.

We eliminate these cycles using thagin ordering
guarantee of chains. Specifically, sub-chains updating
identical rows in derived tables either commute or start
by updating the same base table rthe same server



T1 than every possible causality [11]. Second, we can pro-

. — ' - vide the simple guarantee of read-my-writes [55], which
__ update X in our setting guarantees that a client sees the effect of

\ all her previous chains executing entirely (even if chains

\ \ \

T1(mirror) : : : return early), a useful property in practice. We explain

: how we ensure this property in Section 5.1.
—— update 44 R . .
. estrictions and typical usage

Sedge Transaction chains can reduce user-perceived latency

------ C-edge but there are some restrictions on its use. First, program-
mers must explicitly divide a transaction into a chain
such that (1) only its first hop contains a user-initiated
abort and (2) the chain istaticin that the shards it ac-
cesses at each hop are known before the chain starts ex-
ecuting. This is akin to requiring transactions to have
but then, with Origil"l Ordering, these sub-chains are Con'known read and write Setsy SO ohe m|ght apply the ideas
sistently ordered and thus need not be connected in theyf [56] to systematically transform a general transaction
SC-graph. Note that origin ordering cannot eliminate C- it a static one. The second limitation of Lynx relates to
edges inuser chainsbecause the static analysis cannot jts applicability to improve performance. Programmers
determine if two user chains start at the same server: thag, st design the chains so that, most of the time, the ap-
depends on what table shard they access, which is detegication can proceed after the chains complete their first
mined at run-time. hop (or first few hops). As discussed earlier, returning af-

Complete construction of the SC-graph. With the ter first hop may result in the loss of external consistency
above ideas, we modify the naive construction of the and, if misused, can generate user-perceived anomalies.
SC-graph (Section 4.1) as follows. First, we omit sys- Having discussed the restrictions, we describe our ex-
tem chains and only consider user chains when addingPerience in using transaction chains for Web applica-
C-edges. A user chain may read from derived tables buttions. We focus on Web applications where users inter-
can never directly modify them. Thus, two hops from act, since these are the ones with requirements of scala-
different (instances of) user chains have a C-edge bebility and low latency. In such applications, we recom-
tween them iff (1) both hops access the same base taiend co-locating data owned by the same user in the
ble and an access is a write, or (2) one hop reads fromsame datacenter (possibly with geo-replication). To pro-
a derived tablél and the other hop modifies a base ta- C€SS a typical user request, one uses a transaction chain
ble from whichT derives. Additionally, if two hops are which first modifies a user’s own data and then updates
annotated as commutative, we do not add a C-edge bedther users’ data or global data. We give two examples.
tween them.  Finally, note that linked chains are in-  First, in a social networking application, suppose that
cluded as separate chains in the SC-graph; the fact theyiser X posts a message on the wall of a friend Y. To ex-

NG

Figure 4: Lynx automatically generates sub-chains to up-
date derived tablesX’ and X" of base tableX. The sub-
chains cause an SC-cycle.

are linked does not affect the SC-graph. ecute this request, a transaction chain first modifies X's
) data by inserting X's message in the message table, and
4.3 A word on preserving order then updates Y’s data by inserting the message id into

The techniques we described but not external consis¥’s wall in the wall table. Second, in Figure 1, the chain
tency or order-preserving serializability [35,57]. Order for placing a bid first inserts the bidder’s bid into the bid
preserving serializability requires that if a transaction table and then updates global information by updating
commits before another one starts, the first appears bethe high price in the items table.
fore the latter in the equivalent serial order. The anal- Since an application usually processes a request at
ogous property for chains does not hold: a client may the datacenter that stores the requesting user’s data, the
submit chainT; after chainTy returns (after committing  chains’ first hop completes quickly because runs in the
Ty's first hop), bufl, may be serialized beforg. local datacenter. In both examples, the application re-

There are two ways to address this issue, if necessanturns control to the user after the first hop. The lack of ex-
First, there is a barrier operation that blocks a client un-ternal consistency is partly compensated by the optional
til its outstanding chains complete. This is analogous to read-my-writes guarantee of chains: in the first example,
memory barriers in multiprocessor systems, which allow with read-my-writes user X is guaranteed to see her own
programmers to enforce ordering when necessary. Fomessage when she browses Y’s wall. However, unlike
example, the operation to change a user’s privacy setthe external consistency guarantee, if X tells Y about her
tings should be followed by a barrier. Doing so is akin message using external channelg( the phone) and Y
to enforcing application-defined explicit causality rathe checks his wall, Y may not see X's message. This is



CREATE ENTI TY_GROUP UserEnt {key int}; 1 /ichain definition
2 place_bid = new Lynx.tx_chain;
CREATE TABLE Bids | N_GROUP UserEnt { 3 place_bid. add_hop(insert_bid',
bidder ALl AS UserEnt.key, 4 function(ctx) {
bid_id int AUTOINCREMENT, 5 var row = @i ds. i nsert (ctx.args.bidder,
seller int, 6 ctx.args.item_id...);
item_id int, 7 ctx.bid_id = row.bid_id;
price float 8 }
} PRI MARY_KEY(bidder, bid_id); 9 )
10 place_bid. add_hop('update_price',
11 function(ctx) {
Figure 5: Syntax for defining the Bids base table, whosel2 var seller = ctx.args.seller;
. . 13 var id = ctx.args.item_id;
rows are co-located with those from other tables in thej, var curr_price = @t ens. | ookup(seller, id).price:
same (UserEntity) entity group. 15 if (price > curr_price) {
16 @t ens. updat e(seller, id).price = price;
17 }
L o ) 118 ),
Za mél_tdenz!:jz;d V'eVL‘J’ ]0|n|n_g Bids and Users 19 //lcommutativity annotation
on bids.bidder = Users.ul 20 Lynx. conmmut es(place_bid.hops[insert_bid], @self);
CREATE DTABLE Bids-Users | N_GROUP UserEnt Thi ] o e’ .
FROM Bids, Users { g; Lynx. commut es(place_bid.hops['update_price’], @self);
bidder ALI AS UserEnt.key <-- Bids.bidder, 23 Jichain execution
bid_id <-- Bids.bid_id, 24 place_bid. execut e({
bidder_name <-- Users.name, 25 args : {
seller <-- Bids.seller, - .
} JO N@Bids.bidder = Users.uid); 2 e aams.
/I secondary index for Bids-Users indexed by seller gg gﬁ?j? 101923
CREATE DTABLE Bids-Users_seller I N_GROUP UserEnt 30 }
FROM Bids-Users { ' : .
seller ALl AS UserEnt.key <-- Bids-Users.seller, g; Ig: E?ﬁf ;; tsLFh?ir)rét@,BtheEnt (9999),
bidder <-- Bids-Users.bidder, 3 ) - -
bid_id <-- Bids-Users.bid_id ’
bidder_name <-- Bids-Users.bidder_name,

b 1 NDEX_KEY(seller) Figure 7: JavaScript API for writing a user chain. The

example shows the chain for placing a bid in the auction
Figure 6: Syntax for defining derived tables. The join table service.

Bids-Users unites Bids and Users tables with the join key

Bids.bidder. The secondary index tableBids-Users seller ) ) )
further indexes the join table on the seller column. Figure 6 shows how to define derived tables for sec-

ondary indexes and materialized join vievigds-Users

is a join table that unites tablé¥ds and Userson the

join key Bids.seller Bids-Usersselleris a secondary in-

dex table for the join table on theeller column. This

5 Lynx Architecture table allows one to find the names of bidders who placed
bids on items sold by a given user. The syntax serves

to copy a column from the base table. Currently, Lynx

only supports joins based on equality of indexed keys.

an anomaly that applications must tolerate when taking
advantage of transaction chain’s low latency.

We give an overview of Lynx’s system design, first
explaining its interface to applications (85.1), then de-
scribing its system architecture (85.2).

L Creating and using chains. All operations are per-
5.1 Programml_ng mterfe_tce ~ formed using chains. Figure 7 shows the chain for plac-

Lynx’s API consists of a simple language for describ- jnq 4 bid using Lynx’s JavaScript API. The chain has two
ing table schemas and a client-side library for writing hops, one to insert the bid (line 3) and another to update
chains (our currentimplementation supports JavaScript)ihe current highest bid price of the item (line 10). Each
Creating tables. Programmers use a SQL-like syntax hop has access to the chain’s contex) vhich contains
to define table schemas. Tables are partitioned by rowsnput arguments of the chain. Lynx exposes relational ta-
according to their primary keys. Programmers can pro-bles as auto-generated table objects whose names start
vide hints for co-locating partitions from different table ~ with ‘@’. This syntax simplifies the static analysis tool

based on entity groups [13, 25]. that generates the SC-graph. Since ‘@’ is not allowed in
Figure 5 shows th8idstable schema for the auction JavaScript identifiers, it is removed before execution.
example of Figure 1. ThE€REATE TABLE...IN.GROUP Programmers can read or write base tables (e.g., line

syntax creates a table co-located with the given entity5 and 14); derived tables are updated only by the sys-
group. The table inherits the key of the entity group as tem. Programmers also specify commutative relation-
a column which can be renamed usixigas. The entity  ships (lines 20-21 specify hops that self commute).

key must be part of the table’s primary key. Here, each To ensure a user sees his own writes (read-my-writes),
row of Bidsis co-located with the user placing the bid.  one can force all chains of the user to start at the server



responsible for the user’s data, to leverage origin order- application

ing. In Figure 7, line 31 forces the chain to start at . chain dispatch

the server holding bidder id 9999. To do that, a no-op client RPC

first hop may be added to the chain (in which case

turn_after_first means the chain returns after the original chain

- coordinator spawn system
) server hop executor

5.2 System Overview RPC | database

A Lynx system consists of a number of geo-
distributed datacenters, each of which contains many marigyre 8: Lynx client library and server processes. The
chines. A machine runs many logical Lynx servers in client dispatches chains using RPCs. The server process
the same process. This improves concurrency as havingeceives chains, queues them, and executes them against
more (logical) servers imposes fewer constraints undera local database. The server process also implements geo-
origin ordering. The rows of a table are partitioned into replication, secondary indexes, and materialized join vie's
shardsbased on row keys; that is, a shard is a set of rowsusing system chains.
of a table. The rows of a shard are replicated across the

same set of servers, as we now explain. other systems [21, 53, 54]. Nodes consult the service to

Geo-replication. Data shards can have geo-replicas determine the server responsible for a given shard. This
across data centers. Geo_rep”cas are Conﬁgured by g]formation is Subsequently cached. Each server obtains
configuration service that assigns each shardéplica a lease for its responsible shards and reject requests des-
group, which consists of a set of Lynx servers spread tined for other shards. The configuration service itself is
across datacenters. Geo-replication across data centef§Plemented via a Paxos replicated state machine.

is implemented by Lynx using system chains as eX-Chain analysis. Prior to application execution, Lynx

plained in Section 6. To avoid having conflicting updates statically analyzes chains based on application code and
at different replicas, Lynx uses home geo-replicas, sim-taple schemas (§4.1). The analysis outputs SC-cycles, if
ilar to Walter [53]: each replica group has a designated any. Programmers can use this information to add anno-

server called thome serveor home geo-replicaand tations or use linked chains to break the cycles (84.2).
the system forwards all updates on a shard to its home

geo-replica. The home geo-replica can be chosen intel6 Chain execution in Lynx

ligently to be the server where updates are most likely \We now describe how chains work at runtime. We
to occur. For example, a Web application may have agive an overview of the implementation (§6.1), and then
replica group for each user, where the home geo-replicaexplain the details on how Lynx ensures the various
is in a datacenter close to the user. chain properties (§86.2) and how it uses system chains

Local replication and cluster storage system. Data (86.3).
shards may also be replicatetthin a datacenterto pro- g1 overview
vide fast fail-over. This replication is provided byhus-

ter storage systerthat provides synchronous updates Chains are implemented by the Lynx client library and

and trans . i S dserver process (Figure 8). The client dispatches a chain
parent failover; such a service is implemented, ., .. .
using well-known techniqueg g, [17, 34]). to its first hop, qt a server _storlng the datq accessed by
the hop. If the first hop writes data, the client chooses
Lynx also uses the_ cluster storage system to SYNthe server in the shard’s home datacenter; otherwise, it
chronously replicate internal metadata_ ac_rdmddy chooses a server in a nearby datacenter that has a replica.
datacenters Two datacenters are buddies if they are The first server of a chain coordinates its execution in
near enough to communicate with low latency, yet far o ., ginator thread. The coordinator first stores infor-
A Fhation about the chain in itsistory tablestored in the
affects the other. For example, this criterion may be Mel¢|uster storage system. The history table keeps the chain
by datac_enters that are a few hundred m|Ie_s apart W'thid, the chain parameters from the client, and the origin
rqund-tnp latencies (.)f several ms. Lynx relies on bUd'_ ordering sequencer (86.2). The coordinator may execute
dle_s only to geo-replicate some '”tefna' me_tadata; alOp“'the chain piecewise or as a distributed transaction.
gatlon data carr]w be gebo-r(re]plg:atetlj using chgmsgagnggs To execute the chain piecewise, the coordinator seri-
atacenters chosen by the developer, not just buddies. ally executes each hop of the chain, by invoking the ap-

Configuration service. Lynx relies on a separate config- propriate server (the first server is local) and waiting for
uration service to maintain the mapping from each sharda completion acknowledgement. After the first server
to its replica group. Our design of this service follows executes its hop, the coordinator returns an indication



Property | Technique that updates the server tables during the hop execution.

per-hopisolation | local database transactions Before executing a hop, each server checks its history
all-or-nothing atomicity| chain replay and history table table to see whether the hop has already executed and,
in-chain ordering serial execution

if so, skips execution. This checking is also done in the

origin ordering pairwise sequencers same transaction that updates the history table.
Figure 9: Teghniques u_sed to ensure the chain properties The server then natifies the coordinator that the hop
using piecewise execution. is done, attaching the hop’s output. The server deletes

the hop entry from its history table when it gets an ac-
of first-hop completion to the client library. Then, if knowledgement from the coordinator. The coordinator

the server executed a hop that modified data, it spawnd/Pdates the current progress of the chain in its history
in parallel sub-chains to update derived tables, if any_table; it deletes the chain’s entry after the entire chain

These sub-chains are coordinated by the server and eXtompletes.
ecute like any other chain—in particular, Lynx ensures  To recover a Lynx server, the system can optionally
origin ordering based on where the sub-chains start. Thestore the server’s data in a cluster storage system within
server waits for the sub-chains to complete before sendthe datacenter. In that case, recovery is simple: the
ing an ack to the coordinator of the higher-level chain. system starts a new server and reconfigures the replica
If a chain cannot execute piecewise, the coordinatorgroup to replace the old server with the new one. The
executes it as a distributed transaction using standarchew Lynx server operates on the same data as the old
two-phase locking and two-phase commit [15, 25]. server using the cluster storage system.

6.2 Providing chain properties If the Lynx server does not use_the_cluster storage sys-
tem, recovery relies on geo-replication and reconstruc-
tion. Before using a geo-replica, the system must ensure
it is up-to-date, by restarting and waiting for the com-
letion of any replication sub-chains that might be co-
ordinated by the failed Lynx server; how this is done is
Per-hop isolation. Lynx stores each shard at one server. explained in (2) below. Derived tables might not be geo-
Because each hop of a chain accesses one shard, we cagplicated; these tables are reconstructed using the base
ensure per-hop isolation by simply executing it using a tables. Then, the system reconfigures the replica groups
local serializable database transaction. Our current im+g replace the failed server with a server holding the geo-
plementation requires shards to fit on a single machinereplicas or reconstructed tables.
but it is possible to generalize this to split a shard among
several machines and substitute local transactions with
distributed transactions within a single datacenter.

We now explain how Lynx provides the properties of
chains (83) when chains execute piecewise. Figure 9
gives a summary. These techniques are efficient as the
require little or no coordination across servers.

(2) The coordinator crashes while executing a chain.
In this case, the system restarts the coordinator at another
host. The new coordinator determines the outstanding
All-or-nothing atomicity. If the first hop of chain com-  chains using the history table of the previous coordinator,
mits, subsequent hops are executed exactly once despit&hich is kept in the cluster storage system. To handle
failures. Lynx ensures this property by replaying chains datacenter failures (see below), the coordinator’s clus-
that stop due to failures, using history tables to preventter storage system is geo-replicated at buddy datacenters
duplicate execution, as we now explain. (85.2). (Note that the cluster storage of the coordinator

Recall that a coordinator orchestrates the executionis separate from the storage of a Lynx server—only the
of a chain. We must address three failure types thatformer uses buddies; the latter is contained in a single
break chain execution: (1) crashes of a Lynx server, (2)datacenter.) For each outstanding chain, the new coor-
crashes of the coordinator, and (3) failures of an entiredinator replays the chain from its first hop, executing
datacenter. one hop at a time using the origin ordering sequencers

(1) A Lynx server crashes while executing a htpp.  stored in the history table. Servers that already executed
this case, the system recovers the server as described ithe chain avoid duplicate execution as explained above.

the next paragraph, and the coordinator resubmits the (3) an entire datacenter is destroyed or becomes un-
hop for execution. To avoid duplicate execution, every 5y qilable beyond a time thresholth this case, the sys-

Lynx server keeps &istory table similar to [47]. This tem first recovers the Lynx servers using geo-replicas
table is kept in the same storage system as the servergng reconstruction, as described in (1). Then, the sys-

tables; it records, for every hop that the server completesyem recovers from crashed coordinators, as described in
its chain id, hop number, and any output produced by the oy

hop to be passed forward in the chain. To be consistent,
the history table is updatadsing the same transaction Inner ordering. This property is provided by executing



hops in the order in which they appear in the chain. insert t=(ck) insert tto
.. . . . . primary:;( inserttto T T_Ksec
Origin ordering. A naive way to provide this property Kseok -

would be for coordinators to execute one chain entirely
before starting the next chain. This scheme has low coNn- pgate t=xk) [ read t=(xk) selote 1 from et
T_Ksec T_Ksec

currency and poor performance. primary=x update to t'
changed Ksec=k' inT

-inserttto LT_Kjoin
- read tuples Y from RT_Kjoin
- insert tuples t*Y into LT_RT

Instead, we use pairwise sequencers: each sérver
keepsn counte_rsctrHl...Ctan, Wh_eren is the num- Figure 10: The chains for inserting a new row and updat-
ber of servers in the system. Servealso keep tracks g an existing row's secondary index. Base table T has a
of the latest sequence number that it has processedecondary index table TK seo
from each other servedong_.;...dong, ,j. Suppose a
chain withk hops is to execute on servess s, ..., .
The first servers;, increments the respective counters ‘masye. | inserttioLr }_.
Ctrs s, Cllg sy, ..., Clfs g fOr €ach hop of the chain ™=
and attaches them to the chain as sequence numbers
5€G, 15,985, +19G, g Each of the servers oyl vy | [ 2stiniTien H
waits until its counte[jon%%S reachesseqsﬁs—l be- r(;lrr]rllaeryy:; update to t'in LT™|_ gejete tuples t*Y in LT_RT | |- insert tuples t *Y into LT_RT
fore executing its corresponding hop in the chain.
This mechanism ensures origin ordering: SupposeFigure 11: The chains for inserting a new row and updat-
chainsC; andC; start at the same servieand both exe-  ing an existing row’s join key value. Base tables LT and
cute in some later hops at senjelf C; executes before  RT have secondary index tables, LTK|oin, RT Kjoin (corre-
C; at serveii, the sequence numbseq.,; of chainC, sponding to the join keyKjoin) and a join table LT-RT.
is greater than that @7, causingC, to execute afte€;
at serverj. If a chain visits some servemultiple times, ) i
the hops at will be assigned consecutive sequence num-"9 property of these sub-chains, all replicas are updated
bers and thus will not be interleaved with other chains, I the same order.
thereby preserving the origin ordering property. Chains for secondary index tables. When a row
The message overhead for enforcing origin orderingis inserted, deleted, or updated in a base table, the
is low: the number of sequence numbers attached to aserver where the modification occurred spawns a sub-
chain is proportional to its length. Origin order may chain to modify the index tables. (If an index ta-
sometimes introduce latency overheads, but this is theple is geo-replicated, the corresponding server at the
behavior we desire for consistency. Specifically, if two home datacenter generates additional sub-chains for geo-
chains start at the same server and follow different pathsreplication.) The sub-chain has one or two hopssfach
before overlapping again at another server, the chainindex table: if the indexed value does not change, one
with the longer execution will block the other chain. hop suffices to update the index table; if the indexed
Atomicity of linked chains. To execute a series of Va&lue changes, the old and new rows of the index table
linked chains, the coordinator of the first chain serves May belong to different shards, in which case two hops
as a super-coordinator. The super-coordinator stores th&r® needed, one to delete the old row, the other to insert
linked chains in its history table, for recovery, and then the néw row. Figure 10's top chain shows the case where
launches the chains one at a time at their first hop. Wher®nly one hop is needed.
the chain completes, the super-coordinator marks comgchains for join views. To update materialized join
pletion in the history table. If the super-coordinatordail  yjews we apply ideas from incremental join view up-
recovery is similar to that of a coordinator. date algorithms [16], using chains to correctly update the
6.3 System chains views. Figure 11 shows the sub-chains for updating the
. _ derived tabledL T-RTwhich joins two base tabldsT and
Recall that syste.m chains are generated internally byRTon join keyKjon. We assume that the join ké§join
Lynx to upd.ate derived tables. There are three types ofiS neither the primary key dfT nor RT (the case when
system chains, one for each type of derived table. the join key is a primary key is simpler). Therefore, in or-
Chains for geo-replication. When a hop of the chain  der to create the join view, programmers are required to
modifies a geo-replicated base or derived table, it is for-add index tablesL(T_Kjoin, RT_Kjoin) indexing the join
warded to the corresponding shard’s home datacenter fokey. For updating a join view, there are two cases de-
execution. The responsible server at the home datacentgoending on whether the base table modification changes
generates a sub-chain to propagate the modification tahe existing value of the join key column. The top chain
replicas at other datacenters. Because of the origin orderef Figure 11 illustrates the case when no existing value



of the join key column is changed with an insert oper- applications use secondary indexes and join views ex-
ation to the base tableT. In this case, the sub-chain tensively, and all of their chains can execute piecewise.
updates both T's secondary index table for the join key This required modifying some chains slightly (while re-
(LT_-Kjoin) and the join table. T-RT using a local read- taining the same behavior). In particular, a user chain
write transaction. The use of a local transaction is possi-which reads a base table and its derived table creates an
ble because the affected rows of the index and join tablesSC-cycle. We addressed this by duplicating the needed
LT Kjoin, RTKjoin andLT-RTare co-located in the same columns of the base table in the derived table, so a user
shard. The bottom chain of Figure 11 is generated whenchain needs only read the derived table.

the existing value of the join key column is changed. In
this case, two additional hops are required to maintain
LT-RT, one to delete the existing value, another to add
the new value.

The join table may also have other index tables de-
rived from it. In this case, Lynx spawns parallel sub-
chains that start from the updated join table shard and
update those index tables.

The correctness of the join process is assured by two
features of the chains. First, with origin ordering, modifi-
cations on the same row &ff interleave correctly. Sec-
ond, with per-hop isolation, the local read-write trans-
action updatind-T_Kjoin, RTKjoin, andLT-RT ensures

that LT-RTis always the join of the secondary indexes to the one-hop read-activity chain that reads the sec-

LT Kjoin andRTK;oin. This reduces the correctness of ondary index ofGraphActivities To avoid this cycle,
updating the join table to the correctness of updating sec- . L . 7
; . . we break the befriend chain into three linked chains: one
ondary indexes, which is evident. - : . . .
chain inserts the friendship edges, two chains each insert
once intoActivities The first chain still has an SC-cycle
with the unfriend chain and itself. We break this cycle
by making the insertion/deletion of friendship edges a
commutative operation: we use a counter column in the

JavaScriot API a L it ds th lication tabl Graphtable, and we increment/decrement the counter to
avascrip -atynxutiity reads the application table ;.0 /qe|ete edges. This is similar to the counting sets

schemas and generates JavaScript objects that program\vaiter 53]

mers uses to read and update each table. When execut- .
When user A posts a status message, L-Social uses a

ing a user chain, the coordinator transfers the JavaScript hain o tth St d add
code of each hop to the appropriate server, which thenCh&IN to InSertihe message usand add announce-

caches and executes the code using the V8 JavaScrirﬁnent A has_changed her status ,_lm_tlvmes I.BOFh hops
engine. commute with themselves. A similar chain is used to

; . . epost messages on walls. The join talEphActivities
The implementation stores tables in a custom storag e T .
allows a user to read the activities of his friends in one
system rather than a local database system. The custo
system keeps tables in memory with transactional log-
ging to stable storage.
Our current prototype misses three pieces from the de

Social networking. The L-Social application imple-
ments the basic operations of a website like Facebook
(e.g, befriending users, posting to walls). L-Social
has 5 base tablesGraph Status Users Wall, Activi-

ties There is one join tabl&raphActivitieswith a sec-
ondary index to allow a user to read her friends’ activi-
ties quickly, with one lookup to the secondary index.

To befriend users A and B, the application must cre-
ate two friendship edges and two new-friend activity an-
nouncements, one for each user. A naive design uses a
chain with four user hops, two for inserting in@raph,
two for inserting intoActivities This chain creates an
SC-cycle with C-edges from earaphinsertion hop

7 Implementation of Lynx

The Lynx server and client library consist 86000
lines of C++ code, plus 3500 lines for a custom RPC
library. Programmers specify user chains using Lynx’s

A final static analysis indicates an SC-cycle: the 1-
hop read chain to show a user’s friends has an SC-cycle
; - : : . - : with the 2-hop befriend (or unfriend) chain: the read
sign. First, it lacks the configuration service, instead hop has two C-edges, to each hop of the befriend (or

relying on a static configuration file to indicate what . . o
server has what shards. Second, a Lynx server has ité"nf”end) chain. We use application knowledge to deter-
X mine that this SC-cycle is spurious: since a user never

stable storage on a local disk, not a cluster storage sys- . . . . .
tem. Third, our prototype does not yet implement the befriends himself, the rea_d hop cqnfllcts with at most
recovery protocol (Section 6.2) for handling server or one of the hops of the befrl_end chain, so only one of the
datacenter failures. two C-edges is a real conflict.
o Microblogging. L-Twitter is a simple Twitter clone with

8 Applications tables and schemas modeled after [40]. There are three

We implemented three applications using Lynx: a so-tables: Users Tweets Graph Graph differs from L-
cial network website (L-Social), a microblogging ser- Social’sGraphsince it captures an asymmetric follower
vice (L-Twitter), and an auction service (L-RUBIS). The relation.



A common Twitter operation is to show a user’s nothing. The chain still has an SC-cycle with itself, but
timeline—the collection of tweets posted by users that this cycle is spurious: if two register-user chains conflict
the user follows. Twitter's original implementation on on the first hop (due to both having the same username),
a one-node MySQL server performs a join query be-then one of the chains sees that the username is already
tween Graph and Tweets[40]. Twitter's current dis- taken in its first hop and does nothing in its second hop,
tributed implementation no longer uses joins, but rather so there are no conflicts in the second hop.
manually maintains the timeline of each user in mem- )
cached. L-Twitter follows the original implementaton 9 Evaluation
by using a distributed join tabl€raphTweetgreplicat- We measure the performance of Lynx and its applica-
ing only the tweet id not its text) based on the join key tions across geo-distributed datacenters. The highlights
Tweets.creator= Graph.followeavith a secondaryindex — are the following:
on Graphfollower. By querying this index, L-Twitter ~ « Applications operations have good throughput and
can display a user’s timeline by contacting only one low-latency, despite geo-replication. Since the first
server. We chose this much simpler implementation to  hop of all chains complete in the local datacenter, user-
demonstrate the materialized joins of Lynx. perceived latency is only a few milliseconds.

There are two limitations in our current design of L- « Lynx scales well. As we increase the number of
Twitter. First, when user X starts to follow Y, the un-  serversin each datacenter from 1 to 8, aggregate chain
derlying join chain inserts all of Y’s existing tweets into  throughput grows by a factor of more than 6.

X’s timeline (the secondary index @raphTweets It

would be better to insert only Y’s recent tweets. This 9.1 Experlmentall setup )
can be done adding a selection operation to the join Ve perform experiments on Amazon EC2 using three

view, to filter out old tweets with a smaller timestamp 2vailability regions, East Coast, West Coast and Europe,
than the follow edge timestamp. Supporting such selecWith the following roundtrip latencies between them:

tion operations in Lynx is future work. Second, when a | West Coast _ Europe

user with many followers tweets, there are large over- East Coast 82ms 102ms

head d heir foll Ctimeli Th West Coast 153ms
eads to update their followers' timelines. Thus, our —jags otherwise stated, in all experiments each re-

current push-based approach should be combined withyi hag 4 Lynx servers and 4 client machines, where a
pull-based queries for users marked as popular [52]. machine is an extra-large instance with 15GB of RAM
Auction service. L-RUBIS is a port of the auction and 4 virtual cores. The geo-replication factor is two
website in the RUBIS benchmark [1, 10]. The original datacenters. We perform three runs for each experiment
RUBIS implementation is based on PHP using a local and report the average. (Standard deviations were low.)
MySQL database system. We ported the RUBIS schem .

to Lynx and re-wrote its PHP functions in JavaScript.ag'2 Microbenchmark _ )
L-RUBIS has 10 sharded tables with 13 secondary in- Ve evaluate three types of chains. In the simple-

dexes in total, where a table has at most 3 secondary in€XPeriments, a client operation is a chain witthops,

dexes. We use a join table to unite tgertable, which each inserting a row into a different base table. In the
maps uids to usernames, and (ernmentstﬁble’ which  secondary index experiment, a client operation inserts a

records users’ comments. This table allows L-RUBS to OW into a table with a secondary index, resulting in a
quickly find usernames of users who commented on aSystem chain of 2 hops. In the join experiment, a client
seller operation inserts a row into thel base table which has

There are two noteworthy user chains, one to process?0th @ secondary index table and a join table (with an-

bidding requests (discussed in §2), the other to handleother base table). In all chains, the first hop executes in

new user registration while ensuring unique usernamest€ local datacenter and the subsequent hops execute in

In our first design, a register-user chain checks if a cho-different remote datacenters. All chains run only C++
sen username already exists in a secondary indgsef ~ COJe at servers. _ _

based on usernames; if not, the second hop inserts the Ve Perform two sets of experiments, one without geo-
user into theUsertable. This chain has an SC-cycle be- 'ePlication, one with geo-replication factor of two. Even
tween two of its instances. We subsequently changed” experiments W|thout_ geo-replication, data is spread
L-RUBIS to use an additional tableJsernameswhich over the three EC2 regions.

contains all the usernames that have ever been create@hain throughput. Table 1 shows Lynx’s throughput
The register-user chain first checks that the chosen useiin thousands of chains/s. We first examine the experi-
name is absent ilsernamegand if so inserts it there) ments without geo-replication (left of table). The simple-
and in the second hop adds the useiUsers If the 1 experiment provides a baseline aggregate throughput
chosen username is already taken, the second hop does 3,570K chains/s using 12 servers in 3 datacenters. We




NO GEO-REPLICATION

GEO-REPLICATION AT 2 DATACENTERS

Chain type Throughput | First-hop lat. | Completion lat. Throughput | First-hop lat. | Completion lat.
(K chains/s)| (50%; 99%) (50%; 99%) (K chains/s)| (50%; 99%) (50%; 99%)
simple-1 3,570 3.1ms; 3.3ms| 3.1ms; 3.3ms 1,770 3.1ms; 3.6ms| 84ms; 90ms
simple-2 1,630 3.1ms; 3.4ms | 86ms; 88ms 872 3ms; 3.8ms 266ms; 283ms
simple-3 1,190 3.2ms; 3.3ms | 253ms; 257ms 512 3.1ms; 3.8ms | 607ms; 656ms
secondary index 1,220 3.1ms; 3.4ms | 84ms; 88ms 590 3ms; 3.3ms 258ms; 291ms
join 808 3.1ms; 3.4ms | 89ms; 99ms 453 2.8ms; 3.3ms | 268ms; 299ms

Table 1: Microbenchmark throughput and latency results.

expect the throughput of simple chains witthops to be 2
~1/mthe throughput of a 1-hop chain. The experiments & iggg I
cpnfirm this. Throughputdrops _by over half going f_rom ?53 1000 |
simple-1 to simple-2 because in simple-1 only clients 2  ggo!
forward chains whereas in simple-2 servers alsodo that. 3 600
£ 4007
i ; ; . o 200}

The system chain for updating the secondary index ta 8 5 | .

ble has two hops and its aggregate throughput22aK
chains/s. This is lower than simple-2 because of the over-
head of checking if a table modification needs a system
sub-chain and if so, coordinating the system sub-chain.
The throughput of the join experiment is 808K chain-
s/s, much lower than in the secondary index experiment9-3  Application performance

even though both chains have two hops. This is because Lynx's applications are implemented in JavaScript.
the second hop of the join chain requires more compu-One-hop user chains and system chains need only run
tation: it reads rows from thRTtable and inserts them C++ code at servers whilst multi-hop user chains must
into the join table, all in a local transaction (Figure 11). execute JavaScript at servers.

In the experiments, we pre-populated R&base table . .

so that thpere are 6 rowspto t?e I?ead and inserted into theL'TW'tter' We evaluate three common operatioregd-

join table every time a chain modifies a single row.in tumel{ne for showing a user's tlmellnefpllow-user for
starting to follow a user, andost-tweet for posting a

tweet. We populate the database with WD users,
Chain latency. Table 1 shows the median and 99- each with 6 tweets and 6 followers on average. There
percentile latency for completing both the first hop and gre 3 datacenters, and Lynx can have different geo-
the entire chain. The experiments were done under lowreplication levels for different tables. We geo-replicate
load and we measured the latency of chains starting inthe pase tableS(veetsGraph) at 2 datacenters, but not
the West Coast. Since the first hOp of a chain is in Secondary indexes or joine_g, GraphTweet)S which
the local datacenter, first-hop latency is below 4 ms (99-can be reconstructed if there is a disaster.
percentile) across workloads. Although a Lynx server Figure 12 shows the operation throughput of L-
synchronously writes its log to disk, the disk latency is qyjitter. For operations that write data, the throughput
absorbed by on-disk caching which cannot be disable‘jdepends on how many hops the underlying chain has.
in E_C2. Compa_red to the first hop latency, the total com-1ha chain forpost-tweet inserts a row intoTweets up-
pletion latency is much longer, as each subsequent hORy,tes ts replica across datacenters, inserts 6 rows into
executes in a different datacenter. For example, the meg, o join tableGraphTweetgeach user has 6 followers
dian completion latency for a simple chain of length 2 average) and updates the secondary indesraph-
(no rep_lication) is 86ms and it grows to 253ms when the Tweets for a total 9 hops (6 of which run in paral-
length is 3. lel). This results in an aggregatest-tweet throughput

of 173K tweets/s. Théollow operation also inserts 6
Geo-replication performance.The right part of Table 1 rows intoGraphTweetgeach user has 6 existing tweets),
shows experiments where all base and derived tables ar¢hus having the same number of hopgast-tweet and
geo-replicated at two datacenters. Geo-replication re-achieving similar throughput (184K ops/s). Hollow,
duces throughput by half compared to the left results,all 6 updates to the secondary index ®faphTweets
because it produces twice the work; and it increases comhave the same secondary key and thus they could have
pletion latency due to the extra communication. been batched in one RPC. Lynx does not currently have

follow-user  post-tweet read-timeline

Figure 12: L-Twitter operation throughput



Operation First-hop lat. | Completion lat. —
(50%; 99%) |  (50%; 99%) § 5388 F Simple-3 === 1
follow-user | 3.2ms; 3.5ms| 174ms; 176ms B 5000k Secondary f{lﬂﬁ; 1
post-tweet 3.1ms, 3.4ms| 252ms; 263ms ; 1800 b A
read-timeline | 3.1ms, 3.3ms - =~ 1600 1
2 1400 i
. ; ; : . 5 1200+ g
Table 2: Latency of operations in L-Twitter. All chains in S looolk |
L-Twitter return after the first hop, so first-hop latency cor - g 800 - A
responds to the user-perceived latency. Completion lategyc = 600 - 1
measures when the entire chain completes. xg 388 I rIT m ]

0

1 2 4 8

this optimization. The throthpUI for readmg a users Number of servers per datacenter (3 total datacenters)

timeline is high, at more than.35M ops/s. This is be-

cause the underlying chain only needs to read (manyFigure 13: Aggregate chain throughput as the number of

rows) in one server. server increases in each datacenter. The experiments run
Table 2 shows chain latency for the L-Twitter opera- On three datacenters with no geo-replication.

tions. All chains return after the first hop, so L-Twitter

achieves low user-perceived latency. The completion la-With 8 servers/datacenter, the aggregate secondary index

tency of post-tweetmeasures how long its chain takes throughputis Z8M chains/s—6.8 times the throughput

to update the geo-replica dfweets and update the  of 0.35K chains/s for 1 server/datacenter. This is close

join table GraphTweetsand its secondary index. The to linear scaling.

99-percentile latency is 263ms, meaning that a tweet

quickly appears in all followers’ timelines. 9.5 Comparison with Cassandra/Eiger

We compare the application performance of Lynx to
L-RUBIS. The most interesting chain in L-RUBIS is Eiger [44], a geo-rep”cated key-vajue store with write-
the place-bid operation, with a user chain of 2 hops only transactions and causal+ consistency, built over
(Figure 7) plus 4 hops of system sub-chains for geo-Cassandra [2]. We implemented the L-Twitter opera-
replication and secondary indexes. The aggreglate-  tions using Eiger’s column-family key-value data model.
bid throughput is 168K ops/s—3 times lower than the Each useK has a row with four column familiegollow-
geo-replicated simple-3 chain, which also has 6 hopsershas a list of sparse columns for users that folbléw
(Figure 1). This difference is becauptce-bid runs  followeeshas the users that follows; tweetshas the list
JavaScript user code at the servers using the V8 enginesf posts written byX; andtimelinehas posts from users
which imposes significant overhead, whereas the simplethat X follows. To post a tweet, usé¢t reads the list of
3 chain does not. followers and uses a write-only transaction to insert the

L-Social. We evaluated a common multi-hop user chain tweet and update the followers’ timelines.

in L-Social, post-status. Its first user hop inserts anew  1he Eiger experiments uses the same setup with 3
status to theStatustable and the second user hop adds availability regions. We observe an aggregate through-
amessage “User X has changed her statugctivities put of 12K tweets/s. By comparison, L-Twitter running
The system chains generated by the second user hop ar@? Lynx achieves 173K tweets/s. Thus, Lynx has better
similar to that ofpost-tweet in L-Twitter. The overall  throughputwith serializability while Eiger offers only

throughput forpost-status is 64K ops/s. causal+ consistency. Admittedly, the performance dif-
_ ference can be an artifact of the two systems’ implemen-
9.4 Scaling tation choices; an apples-to-apples comparison is impos-

Lynx partitions data across many shards stored atsible.
many servers, to scale with both the number of server- Lynx uses much less storage space than Eiger. In L-
s/datacenter and the number of datacenters. Twitter, Lynx geo-replicates base tables only once and
Figure 13 shows the aggregate chain throughput wherderived tables zero times, which suffices for disaster tol-
we increase the number of servers in each datacentegrance. By contrast, Eiger forces all data to be replicated
from 1 to 8. The experiments always run on three data-at all datacenters, causing a large space overhead.
centers, with our largest experiments having 8 =
24 Lynx servers and924 cliepnts. We use tge simple—]'O Related work
3, secondary index, and join workloads (without geo- Geo-distributed storage.Geo-distributed systems face
replication) as described in Section 9.2. We see thatthe unpleasant tradeoff between strong semantics and
Lynx scales well with the number of servers. This low latency. Spanner provides strong semantics with
is expected as different Lynx chains run independently.order-preserving serializable transactions [25], bus¢he



are expensive: like its predecessor Megastore [13], SpanBigTable now supports secondary indexes [20]. PNUTS

ner's update transactions take many cross-datacenteadded support for secondary indexes and join views that

roundtrips to execute and commit. Replicated Com-are asynchronously updated [8]. Lynx also updates de-

mit [?] and MDCC [41] are faster but still incur cross- rived tables asynchronously, in piecewise chains. Unlike

datacenter latency to execute and commit. PNUTS, Lynx uses static analysis to provide serializabil-
At the other end of the tradeoff, Cassandra [2] and ity despite asynchronous updates.

Dynamo [27] are key-value stores offering eventual con-yqrkflow Management [57]. Transaction chains re-
sistency and PNUTS [24] offers the slightly stronger ggmples application workflows in systems like travel
per-record timeline consistency. ~Other systems Pro-panning or insurance claim processing. An application
vide stronger but _stlll relaxed semantics to achleye |°W'workflow naturally consists of many activities, each ex-
latency. COPS/Eiger [43, 44] offer causal+ consistency ¢ ting as a transaction. Like Lynx, workflow systems
write-write conflicts that are resolved deterministically 5 ,arantee that all activities are eventually executed com-
These systems do not support general transactions anf{jetely and exactly once. However, these systems are de-
require replication of all data across all datacenters-Wal signed to manage sophisticated workflows often involv-
ter provides parallel snapshot isolation [53] and Gemini ing people actions, while Lynx uses chains to efficiently

provides Red/Blue consistency [42]. Apart from weak- gyacyte a logical transaction while guaranteeing that the
ened semantics, the latter two systems do not have a scalpire chain is serializable as a single transaction.

able design within a datacenter. ) N
Transaction Decomposition. The database commu-

Single datacen'Fer. storage systems. Slncg the net- nity has explored various aspects in decomposing
work latency within a single datacenter is low (sub- 5 transaction in smaller pieces using SAGAS [33],
millisecond), it ig generally agrged that the storage SyS-step-decomposed  transactions [14], transaction
tem should provide strong consistency. chopping [51], multi-database transactional man-
The late 80s saw pioneering work in distributed agement [19] and Spheres of Control (SoC) [26, 37].
database systems, such as Gamma [28], Bubba [18]garcia-Molina observes that if various pieces of a
R* [45], Teradata and Tandem [29], which aim to the decomposed transaction commute, a safe execution
provide the same transactional updates and query intefschedule always exists [32]. Lynx also exploits
faces present in centralized database systems. Thesgommutativity, inspired by this and other work includ-
systems pioneered distributed transactions using lockinding Walter [53], Gemini [42], and conflict-free data
and two-phase commit [18, 28, 45]. types [50]. In addition to commutativity, Lynx also
Modern single-datacenter storage systems offer variprovides the origin ordering property to reduce conflicts
ants of the key/value interface (BigTable [21], H- among system chains.
Base [3], MongoDB [5]). Recently, there has also been
strong interest in transactions, e.g. in Sinfonia [9], Per-11  Conclusion
colator [46], and H-store/VoltDB [39]. These systems  Lynx provides serializability with low-latency in geo-
provide distributed transactions using two-phase com-distributed storage systems. The key insight is to express
mit, which is efficient within a datacenter. The Hyper- transactions as transaction chains with multiple hops,
Dex key-value store [30] uses value-dependent chains taand then perform a global static analysis of the chains,
update replicas consistently within a datacenter. Value+o find conflicts and determine when chains can execute
dependent chains provide a property similar to chain’s piecewise without violating serializability. Chains are
origin ordering. also useful for providing several features: secondary in-

View maintenance in database system3hereismuch ~ d€xes, materialized join views, and geo-replication. We
work on maintaining materialized views. Incremental démenstrated the use of Lynx in an auction service, a
maintenance schemes typically update base tables angicroblogging service, and a social networking site.
views in the same ACID transaction [16]. Deferred main- Acknowledgments.This research was supported in part
tenance schemes batch changes to tables, and updatg/ NSF grant CNS-1218117. We thank Nguyen Tran
views periodically or when there is a query [23, 38, 58], and Songbin Liu, who contributed to Lynx’s design and
for efficiency. Deferred maintenance is often used in an earlier implementation. Many people helped us im-
data warehouses where only one update batch executgsrove the work through discussions and reviews, includ-
at any time [48]. In the same spirit, LazyBase [22] op- ing Frank Dabek, Robert Grimm, Wilson Hsieh and Den-
timizes data analytics by batching writes and updating nis Shasha.
materialized secondary indexes in epochs.
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