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Abstract
Currently, users of geo-distributed storage systems face
a hard choice between having serializable transactions
with high latency, or limited or no transactions with low
latency. We show that it is possible to obtain both seri-
alizable transactions and low latency, under two condi-
tions. First, transactions are known ahead of time, per-
mitting an a priori static analysis of conflicts. Second,
transactions are structured astransaction chainsconsist-
ing of a sequence of hops, each hop modifying data at
one server. To demonstrate this idea, we built Lynx,
a geo-distributed storage system that offers transaction
chains, secondary indexes, materialized join views, and
geo-replication. Lynx uses static analysis to determine
if each hop can execute separately while preserving
serializability—if so, a client need wait only for the first
hop to complete, where this hop is local to the client’s
datacenter. To evaluate Lynx, we built three applications:
an auction service, a Twitter-like microblogging site and
a social networking site. These applications successfully
use chains to achieve low latency operation and good
throughput.

1 Introduction
Many Web applications rely ongeo-distributedstor-

age systems, such as Cassandra [2], Megastore [13] and
Spanner [25]. These systems hold the promise of both
high availability (by replicating data across datacenters)
and low latency (by placing data close to clients). A use-
ful feature of storage systems is serializable transactions,
which group many read/write operations to ensure con-
sistency despite failures and concurrency. Unfortunately,
existing mechanisms to provide transactions [15] are
expensive for a geo-distributed setting, incurring inter-
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datacenter delays of up to hundreds of milliseconds.

Studies done at Google and Amazon show that Web
users are sensitive to latency [49]: even a 100ms in-
crease in latency causes a measurable revenue losses. It
is therefore important to reduce the latency of transac-
tions as much as possible. A common way to achieve
low-latency is to drop serializability [31] and offer re-
laxed consistency (e.g. causal+ [43, 44], PSI [53],
Red/Blue [42], HAT [12]). Many systems with weak-
ened consistency also have other limitations: some
systems require all data to be replicated at all data-
centers [42–44], while others [42,53] lack a scalable de-
sign within a datacenter.

It turns out that giving up serializability for low-
latency is unnecessary. This claim is predicated on two
observations. First, typical Web applications run a pre-
defined set of transactions, so it is possible to perform
a global static analysis of its transactions before execu-
tion, to find opportunities to execute them quickly with-
out violating serializability. Second, one can decompose
a general (geo-distributed) transaction into a sequence of
hops, each modifying data in only one server or in one
datacenter. With the aid of static analysis, one can safely
run these hops as separate transactions while preserving
serializability, and return quickly to clients after the first
hop (often in the local datacenter).

Using these ideas we built Lynx, a geo-distributed
storage system that provides serializability with low la-
tency. To scale, Lynx partitions tables into many shards,
each possibly replicated in a subset of datacenters. Lynx
provides a new primitive calledtransaction chainor sim-
ply chain. A chain is a sequence of hops, each access-
ing data on one server, such that all hops executeex-
actly onceor none of them do, similar to the notion of a
saga [33]. Applications submit transactions to Lynx as
chains; Lynx also uses chains internally to update sec-
ondary indexes, materialized joins, and geo-distributed
replicas.

Prior to application execution, Lynx performs a global
static analysis of its transaction chains. The analy-
sis determines if it is possible to execute each chain
piecewise—that is, as a series of local transactions, one



per hop—while preserving serializability of the entire
chain. The analysis uses the theory of transaction chop-
ping [51] to construct a graph based on the operations
in the transactions. Lynx incorporates two techniques to
enhance the opportunity for piecewise execution. First,
Lynx lets programmers provide annotations about the
commutativity of pairs of hops that would otherwise be
considered to conflict. Second, when chains are exe-
cuted piecewise, Lynx ensuresorigin ordering: if chains
T1 andT2 start at the same server, andT1 starts before
T2, thenT1 executes beforeT2 at every server where they
both execute. This property eliminates many conflicts in
the internal chains Lynx uses for derived tables.

Lynx has some limitations. First, it does not reduce
the total execution time of the chain; rather, Lynx can re-
turn control to the application after the chain’s first hop.
This feature does not benefit all applications, but we be-
lieve that it helps many Web applications where users
interact—for instance, by sending friendship requests,
posting messages on walls, etc. These operations are
well served by a chain whose first hop modifies the user’s
own data, while later hops modify other users’ data in
the background. The second limitation is that Lynx can-
not execute all chains piecewise to attain low first-hop
latency: the static analysis may force some chains to
execute as distributed transactions. The third limitation
is that Lynx does not guarantee external consistency or
order-preserving serializability [35, 57], but to compen-
sate Lynx provides useful chain ordering mechanisms.

Using Lynx, we built three Web applications: an auc-
tion service ported from the RUBiS benchmark [1,10]; a
Twitter-like microblogging service; and a Facebook-like
social networking site. These applications were easy to
build using Lynx’s API, and they benefit from piecewise
chains. Experiments running on three EC2 availability
regions show that these applications achieve low latency
with good throughput. Lynx also scales well: as we in-
crease the number of Lynx servers per datacenter from 1
to 8, chain throughput grows by more than 6 times.

2 Overview
Setting. Lynx is a geo-distributed storage system for
large Web applications, such as social networks, web-
based email, or online auctions. Lynx scales by parti-
tioning data into many shards spread across machines.
Each shard can be geo-replicated at many datacenters,
based on requirements of locality, durability, and avail-
ability. Unlike other systems [42–44], Lynx does not re-
quire that all datacenters replicate all data, so Lynx can
have many datacenters with low replication cost.

Data model and usage.Application developers define
a set of schematized relational tables [25] sharded based
on their primary key. Lynx provides general transactions
in the form of chains, and all operations are performed

575       Cute puppy  123         --            --

Items (primary_key=item_id)

345        Nikon N50   666       123      $200

item_id  descrip-   seller   high       high
                tion                     bidder    price

Bids (primary_key=bid_id)

2          123       345    $200         

1          549       345    $100

bid_id  bidder  item  bid_price

• Insert bid b into Bids
• Read Items[b.item_id]
• Update Items[b.item_id]  if b.price is higher

Chain for placing a bid b

Figure 1: Example schema for a simple auction service and
a chain for placing the bid of a user.

using chains. API details are given in Section 5.1.
We illustrate how applications can use Lynx with an

example from RuBIS [1], a simple online auction service
modeled after eBay. RuBIS stores data in many tables;
two are shown in Figure 1. TheItemstable stores each
item on sale with its item id, current highest bid, and
user who placed that bid. TheBids table stores item ids
that received a bid, the bid amounts, and the bidders.

The RuBIS developers denormalized the schema to
duplicate the highest bid in theItemstable, to improve
the performance of a common operation: display the cur-
rent highest bid price of an item. When a user places a
new bid, RuBIS must insert the bid intoBidsand update
the corresponding high price inItemsin the same trans-
action to ensure consistency. With Lynx, programmers
write such a transaction as a chain (Figure 1, bottom).

Lynx supportsderived tables—tables whose contents
are automatically derived from other tables—for speed-
ing up queries. There are three types of such tables:
secondary indexes, materialized join views, and geo-
replicas. For example, RuBIS has a secondary index
on the itemid of Bids, to quickly find the bidding his-
tory of an item. Derived tables are themselves sharded
according to their key (secondary index key, join key,
or replicated primary key) and spread across machines.
When base tables change, Lynx automatically issues sub-
chains to update the derived tables. These sub-chains are
calledsystem chains, whileuser chainsare written by ap-
plication developers.

Before application deployment, Lynx performs a
static analysis of all application chains to determines if
Lynx can execute each chainpiecewise—one hop at a
time—while ensuring the entire chain and its subchains
are serializable as a single transaction.

Features.In summary, Lynx has the following features:

• Serializability. Given an application and its chains,
Lynx ensures that concurrent execution of those
chains preserve serializability.

• Low latency. For chains that can be executed piece-
wise, applications can achieve low latency by having



Lynx return control after the first hop, which typically
executes in the local datacenter. To the best of our
knowledge, no prior geo-distributed storage system
provides both serializability and low latency.

• Derived tables. Automatically updated secondary in-
dexes, materialized join tables, and geo-replicas speed
up common application queries.

• Scalablity.Lynx scales with the number of machines
in a datacenter and with the number of datacenters.

Transaction chains are the fundamental mechanism
underlying Lynx; we develop them fully in the next
two sections. Section 3 describes the properties of
chains. Section 4 explains how to ensure serializability
of chains.

3 Transaction chains
A transaction chain accesses data that is distributed

over many servers. A chain encodes a transactionT as a
sequence of hopsT=[p1 . . . pk] with each hoppi execut-
ing at one server; servers can be at different datacenters
and may repeat. A hoppi may have input parameters
that depend on the output of earlier hops in the chain.

It is desirable to execute a chainpiecewise, where
hops are executed one after the other as separate trans-
actions. Such execution is efficient, because a hop is
contained in a server, so it can be executed using a local
transaction. Chains can also improve perceived applica-
tion latency, as an application can just wait for its first
hop.

Guarantees.Chains have the following properties:

• Per-hop isolation.Each hop is serializable w.r.t. other
hops in all chains. This is achieved efficiently by exe-
cuting a hop as a local transaction.

• Inner ordering. Hop pi+1 never executes be-
fore hoppi .

• All-or-nothing atomicity.1 If the first hop of a chain
commits, then the other hops eventually commit as
well. (They may abort due to concurrency control,
but in that case the system retries until they commit.)
Moreover, if the first hop aborts then no hop com-
mits. Thus, the first hop determines the outcome of
the chain.

• Origin ordering. If two chains T=[p1...] and
T ′=[p′1...] start on the same server withp1 executing
beforep′1, thenpi executes beforep′j for everypi and
p′j that execute on the same server.

When executed piecewise, chains might interleave
their execution. Say, if a chain has hopsp1, p2 and
another chain has hopsp′1, p

′

2, the system may execute
the hops in the orderp1, p′1, p2, p′2. Lynx determines
whether such interleavings are serializable (Section 4)

1called simplyatomicity in the database community

and, if not, avoids them by executing the chain as a dis-
tributed transaction. Thus, Lynx ensures the following:

• Serializability.Chains are serializable as transactions.

Restrictions. A chain has two restrictions. First,
application-initiated aborts can occur only at the first
hop of a chain (this is needed to implement all-or-
nothing atomicity). Second, chains are static: each hop
executes at a server that is known when the chain starts
(needed to implement origin ordering). Not every trans-
action can be structured as a chain. Those that cannot
can be executed as a regular transaction in Lynx.

Linked chains. Applications can link together multiple
chains so that they execute consecutively, like a chain of
chains, where each chain individually satisfies the prop-
erties above. The set of linked chains may not be seri-
alized as one transaction, but Lynx ensures the follow-
ing atomicity property: if chains are linked and the first
chain starts then the other chains eventually start. Like
hops in a chain, linked chains can receive inputs from
previous chains, and all linked chains must be submitted
together.

4 Providing serializability
Web applications typically have an a priori known set

of transactions, permitting a global static analysis of the
application to determine what chains can be executed
piecewise while preserving serializability. If the analy-
sis determines that executing a chain piecewise would
violate serializability, Lynx executes the chain as a dis-
tributed ACID transaction [15, 25], incurring higher la-
tency. Alternatively, the developer can remove the cycle
using annotations or linked chains, as we describe below.

In what follows, we explain how the analysis works
(§4.1), how to improve the chances for piecewise execu-
tion (§4.2), how to cope with the lack of external consis-
tency (§4.3), and what limitations chains have (§4.4).

4.1 Static analysis of chains
The analysis uses knowledge of the table schemas and

the application chains, specifically the table accessed by
each hop of each chain and the type of access (read or
write). The analysis determines what chains can be exe-
cuted piecewise while preserving serializability.

The analysis is based on the theory of transaction
chopping, originally developed for breaking up large
transactions into smaller pieces in centralized database
systems [51]. The chopping algorithm constructs a
graph, which we callSC-graph, for a set of chopped
transactions, where vertices represent transaction pieces
and edges represent a relationship between pieces. There
are two types of edges: S-edges connect vertices of the
same unchopped transaction, C-edges connect vertices
of different transactions if they access the same item
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(a) With SC-cycle (b) No SC-cycle
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Figure 2: SC-graph analysis for transaction chopping.T1
is chopped intoT1,1,T1,2 and T2 into T2,1,T2,2. There is an
SC-cycle in graph (a) but not (b).

and an access is a write. AnSC-cycleis a simple cy-
cle containing a C-edge and an S-edge (Figure 2). It
is shown that serializability is assured if the SC-graph
has no SC-cycles [51]. Intuitively, an SC-cycle indicates
a non-serializable interleaving. Figure 2(a) allows the
problematic interleavingT1,1, T2,1, T2,2, T3, T1,2.2

Naive construction of the SC-graph.Applying the the-
ory of transaction chopping directly, a chain corresponds
to a chopped transaction and its hops are the pieces. con-
nected by S-edges. To obtain the C-edges in the SC-
graph, we consider potential conflicts between hops of
different chains. Static analysis cannot determine ex-
actly what data items a chain accesses (which rows); to
be conservative, if hops of different chains access the
same table and an access is a write, we add a C-edge be-
tween them. Since instances of the same chain may be in
conflict (if they update data), the SC-graph includes two
instances of every chain that updates data;3 for read-only
chains, one instance suffices. We must also consider sys-
tem sub-chains caused by user chains (recall that system
chains are automatically created to update derived tables
when base tables change); we want these sub-chains to
be serialized with the originating chain. A simple idea
is to combine a user chain and its sub-chains in the SC-
graph: when a user chain hop modifies a base table, the
is expanded into sub-chains that update derived tables.
Later, in Section 4.2, we improve on this simple idea.

As an example, consider the auction application from
Section 2 (Figure 1), with the three chains:Tbid for plac-
ing a bid,Titem for adding an item to be auctioned, and
Tread for browsing an item.Tbid has two hops, while the
others have one hop. For simplicity, let us ignore the
system chains. Figure 3 shows the resulting SC-graph.
There is an SC-cycle involving two instances ofTbid, so
this chain cannot safely execute piecewise.

2This creates a cycle in theserialization graph[57], whereT1 pre-
cedesT2 (asT1,1 precedesT2,1 in the interleaving),T2 precedesT3 (as
T2,2 precedesT3), andT3 precedesT1 (asT3 precedesT1,2).

3Two instances suffice, as SC-cycle with more than two instances
implies an SC-cycle with only two instances.
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Figure 3: SC-graph for a simple auction service (Figure 1)
with three types of chains: Tbid, Tadd, Tread. There are two
copies of Tbid and Tadd to account for self-conflict. The
graph has an SC-cycle involving two copies ofTbid.

4.2 Improving chances for piecewise execution
When we naively apply the theory of transaction chop-

ping, we find little opportunity for piecewise execution,
because SC-cycles are everywhere! Below, we analyze
the problems and propose ways to avoid these cycles.

User chains. User chains can have spurious C-edges
because the notion of conflict is coarse-grained, being
based on table accesses. This problem is exacerbated
by self-conflicts between instances of the same chain.
In Figure 3,Tbid modifies two tables, creating an SC-
cycle on its own instances. Closer inspection reveals
that the hop “insert to Bids” inserts a row with a unique
id; this hop commutes with itself, so it does not self-
conflict. Developers can useannotationsto indicate the
hop self-commutes, which removes the C-edge between
its instances, breaking the cycle. Other systems also ex-
ploit commutativity [42,50,53], but in different ways.

In other cases, there may be unnecessary S-edges: a
user chain may have hops that need not be serialized to-
gether, but were placed in the same chain because they
require all-or-nothing atomicity. In that case, program-
mers can separate these hops into different chains and
execute them as linked chains (Section 3), which also
provide all-or-nothing atomicity but avoid S-edges.

System chains.Many self-conflicts arise among the sys-
tem sub-chains created by Lynx to update derived tables.
Figure 4 shows a one-hop user chain that modifies a
base table causing a system chain. Because a chain and
its resulting system chains should be serialized together
as one transaction, we consider the combined chain in
the SC-graph. This chain unfortunately causes an SC-
cycle over its two instances, because of self-conflicts
(Figure 4) and these updates do not always commute.

We eliminate these cycles using theorigin ordering
guarantee of chains. Specifically, sub-chains updating
identical rows in derived tables either commute or start
by updating the same base table rowat the same server—
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Figure 4: Lynx automatically generates sub-chains to up-
date derived tablesX′ and X” of base tableX. The sub-
chains cause an SC-cycle.

but then, with origin ordering, these sub-chains are con-
sistently ordered and thus need not be connected in the
SC-graph. Note that origin ordering cannot eliminate C-
edges inuser chains, because the static analysis cannot
determine if two user chains start at the same server: that
depends on what table shard they access, which is deter-
mined at run-time.

Complete construction of the SC-graph. With the
above ideas, we modify the naive construction of the
SC-graph (Section 4.1) as follows. First, we omit sys-
tem chains and only consider user chains when adding
C-edges. A user chain may read from derived tables but
can never directly modify them. Thus, two hops from
different (instances of) user chains have a C-edge be-
tween them iff (1) both hops access the same base ta-
ble and an access is a write, or (2) one hop reads from
a derived tableT and the other hop modifies a base ta-
ble from whichT derives. Additionally, if two hops are
annotated as commutative, we do not add a C-edge be-
tween them. Finally, note that linked chains are in-
cluded as separate chains in the SC-graph; the fact they
are linked does not affect the SC-graph.

4.3 A word on preserving order
The techniques we described but not external consis-

tency or order-preserving serializability [35, 57]. Order-
preserving serializability requires that if a transaction
commits before another one starts, the first appears be-
fore the latter in the equivalent serial order. The anal-
ogous property for chains does not hold: a client may
submit chainT2 after chainT1 returns (after committing
T1’s first hop), butT2 may be serialized beforeT1.

There are two ways to address this issue, if necessary.
First, there is a barrier operation that blocks a client un-
til its outstanding chains complete. This is analogous to
memory barriers in multiprocessor systems, which allow
programmers to enforce ordering when necessary. For
example, the operation to change a user’s privacy set-
tings should be followed by a barrier. Doing so is akin
to enforcing application-defined explicit causality rather

than every possible causality [11]. Second, we can pro-
vide the simple guarantee of read-my-writes [55], which
in our setting guarantees that a client sees the effect of
all her previous chains executing entirely (even if chains
return early), a useful property in practice. We explain
how we ensure this property in Section 5.1.

4.4 Restrictions and typical usage
Transaction chains can reduce user-perceived latency

but there are some restrictions on its use. First, program-
mers must explicitly divide a transaction into a chain
such that (1) only its first hop contains a user-initiated
abort and (2) the chain isstatic in that the shards it ac-
cesses at each hop are known before the chain starts ex-
ecuting. This is akin to requiring transactions to have
known read and write sets, so one might apply the ideas
of [56] to systematically transform a general transaction
into a static one. The second limitation of Lynx relates to
its applicability to improve performance. Programmers
must design the chains so that, most of the time, the ap-
plication can proceed after the chains complete their first
hop (or first few hops). As discussed earlier, returning af-
ter first hop may result in the loss of external consistency
and, if misused, can generate user-perceived anomalies.

Having discussed the restrictions, we describe our ex-
perience in using transaction chains for Web applica-
tions. We focus on Web applications where users inter-
act, since these are the ones with requirements of scala-
bility and low latency. In such applications, we recom-
mend co-locating data owned by the same user in the
same datacenter (possibly with geo-replication). To pro-
cess a typical user request, one uses a transaction chain
which first modifies a user’s own data and then updates
other users’ data or global data. We give two examples.

First, in a social networking application, suppose that
user X posts a message on the wall of a friend Y. To ex-
ecute this request, a transaction chain first modifies X’s
data by inserting X’s message in the message table, and
then updates Y’s data by inserting the message id into
Y’s wall in the wall table. Second, in Figure 1, the chain
for placing a bid first inserts the bidder’s bid into the bid
table and then updates global information by updating
the high price in the items table.

Since an application usually processes a request at
the datacenter that stores the requesting user’s data, the
chains’ first hop completes quickly because runs in the
local datacenter. In both examples, the application re-
turns control to the user after the first hop. The lack of ex-
ternal consistency is partly compensated by the optional
read-my-writes guarantee of chains: in the first example,
with read-my-writes user X is guaranteed to see her own
message when she browses Y’s wall. However, unlike
the external consistency guarantee, if X tells Y about her
message using external channels (e.g., the phone) and Y
checks his wall, Y may not see X’s message. This is



CREATE ENTITY_GROUP UserEnt {key int};

CREATE TABLE Bids IN_GROUP UserEnt {
bidder ALIAS UserEnt.key,
bid_id int AUTOINCREMENT,
seller int,
item_id int,
price float

} PRIMARY_KEY(bidder, bid_id);

Figure 5: Syntax for defining the Bids base table, whose
rows are co-located with those from other tables in the
same (UserEntity) entity group.

//a materialized view joining Bids and Users
//on Bids.bidder = Users.uid
CREATE DTABLE Bids-Users IN_GROUP UserEnt

FROM Bids, Users {
bidder ALIAS UserEnt.key <-- Bids.bidder,
bid_id <-- Bids.bid_id,
bidder_name <-- Users.name,
seller <-- Bids.seller,

} JOIN(Bids.bidder = Users.uid);

// secondary index for Bids-Users indexed by seller
CREATE DTABLE Bids-Users_seller IN_GROUP UserEnt

FROM Bids-Users {
seller ALIAS UserEnt.key <-- Bids-Users.seller,
bidder <-- Bids-Users.bidder,
bid_id <-- Bids-Users.bid_id
bidder_name <-- Bids-Users.bidder_name,

} INDEX_KEY(seller);

Figure 6: Syntax for defining derived tables. The join table
Bids-Users unites Bids and Users tables with the join key
Bids.bidder. The secondary index tableBids-Users seller
further indexes the join table on the seller column.

an anomaly that applications must tolerate when taking
advantage of transaction chain’s low latency.

5 Lynx Architecture
We give an overview of Lynx’s system design, first

explaining its interface to applications (§5.1), then de-
scribing its system architecture (§5.2).

5.1 Programming interface
Lynx’s API consists of a simple language for describ-

ing table schemas and a client-side library for writing
chains (our current implementation supports JavaScript).

Creating tables. Programmers use a SQL-like syntax
to define table schemas. Tables are partitioned by rows
according to their primary keys. Programmers can pro-
vide hints for co-locating partitions from different tables
based on entity groups [13,25].

Figure 5 shows theBids table schema for the auction
example of Figure 1. TheCREATE TABLE. . .IN GROUP

syntax creates a table co-located with the given entity
group. The table inherits the key of the entity group as
a column which can be renamed usingALIAS. The entity
key must be part of the table’s primary key. Here, each
row of Bids is co-located with the user placing the bid.

1 //chain definition
2 place_bid = new Lynx. tx_chain;
3 place_bid. add_hop('insert_bid',
4 function(ctx) {
5 var row = @Bids. insert(ctx.args.bidder,
6 ctx.args.item_id...);
7 ctx.bid_id = row.bid_id;
8 }
9 );

10 place_bid. add_hop('update_price',
11 function(ctx) {
12 var seller = ctx.args.seller;
13 var id = ctx.args.item_id;
14 var curr_price = @Items. lookup(seller, id).price;
15 if (price > curr_price) {
16 @Items. update(seller, id).price = price;
17 }
18 );
19 //commutativity annotation
20 Lynx. commutes(place_bid.hops['insert_bid'], @self);
21 Lynx. commutes(place_bid.hops['update_price'], @self);
22
23 //chain execution
24 place_bid. execute({
25 args : {
26 bidder : 9999,
27 seller : 8888,
28 item_id : 123,
29 price : 1.09
30 },
31 force_first_hop : @UserEnt(9999),
32 return_after_first : true
33 });

Figure 7: JavaScript API for writing a user chain. The
example shows the chain for placing a bid in the auction
service.

Figure 6 shows how to define derived tables for sec-
ondary indexes and materialized join views.Bids-Users
is a join table that unites tablesBids andUserson the
join keyBids.seller. Bids-Usersseller is a secondary in-
dex table for the join table on theseller column. This
table allows one to find the names of bidders who placed
bids on items sold by a given user. The<-- syntax serves
to copy a column from the base table. Currently, Lynx
only supports joins based on equality of indexed keys.

Creating and using chains. All operations are per-
formed using chains. Figure 7 shows the chain for plac-
ing a bid using Lynx’s JavaScript API. The chain has two
hops, one to insert the bid (line 3) and another to update
the current highest bid price of the item (line 10). Each
hop has access to the chain’s context (ctx) which contains
input arguments of the chain. Lynx exposes relational ta-
bles as auto-generated table objects whose names start
with ‘@’. This syntax simplifies the static analysis tool
that generates the SC-graph. Since ‘@’ is not allowed in
JavaScript identifiers, it is removed before execution.

Programmers can read or write base tables (e.g., line
5 and 14); derived tables are updated only by the sys-
tem. Programmers also specify commutative relation-
ships (lines 20–21 specify hops that self commute).

To ensure a user sees his own writes (read-my-writes),
one can force all chains of the user to start at the server



responsible for the user’s data, to leverage origin order-
ing. In Figure 7, line 31 forces the chain to start at
the server holding bidder id 9999. To do that, a no-op
first hop may be added to the chain (in which casere-
turn after first means the chain returns after the original
first hop).

5.2 System Overview
A Lynx system consists of a number of geo-

distributed datacenters, each of which contains many ma-
chines. A machine runs many logical Lynx servers in
the same process. This improves concurrency as having
more (logical) servers imposes fewer constraints under
origin ordering. The rows of a table are partitioned into
shardsbased on row keys; that is, a shard is a set of rows
of a table. The rows of a shard are replicated across the
same set of servers, as we now explain.

Geo-replication. Data shards can have geo-replicas
across data centers. Geo-replicas are configured by a
configuration service that assigns each shard to areplica
group, which consists of a set of Lynx servers spread
across datacenters. Geo-replication across data centers
is implemented by Lynx using system chains as ex-
plained in Section 6. To avoid having conflicting updates
at different replicas, Lynx uses home geo-replicas, sim-
ilar to Walter [53]: each replica group has a designated
server called thehome serveror home geo-replica, and
the system forwards all updates on a shard to its home
geo-replica. The home geo-replica can be chosen intel-
ligently to be the server where updates are most likely
to occur. For example, a Web application may have a
replica group for each user, where the home geo-replica
is in a datacenter close to the user.

Local replication and cluster storage system. Data
shards may also be replicatedwithin a datacenter to pro-
vide fast fail-over. This replication is provided by aclus-
ter storage systemthat provides synchronous updates
and transparent failover; such a service is implemented
using well-known techniques (e.g., [17,34]).

Lynx also uses the cluster storage system to syn-
chronously replicate internal metadata acrossbuddy
datacenters. Two datacenters are buddies if they are
near enough to communicate with low latency, yet far
enough so that one datacenter is safe from a disaster that
affects the other. For example, this criterion may be met
by datacenters that are a few hundred miles apart with
round-trip latencies of several ms. Lynx relies on bud-
dies only to geo-replicate some internal metadata; appli-
cation data can be geo-replicated using chains acrossany
datacenters chosen by the developer, not just buddies.

Configuration service.Lynx relies on a separate config-
uration service to maintain the mapping from each shard
to its replica group. Our design of this service follows

application
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Figure 8: Lynx client library and server processes. The
client dispatches chains using RPCs. The server process
receives chains, queues them, and executes them against
a local database. The server process also implements geo-
replication, secondary indexes, and materialized join views
using system chains.

other systems [21, 53, 54]. Nodes consult the service to
determine the server responsible for a given shard. This
information is subsequently cached. Each server obtains
a lease for its responsible shards and reject requests des-
tined for other shards. The configuration service itself is
implemented via a Paxos replicated state machine.

Chain analysis. Prior to application execution, Lynx
statically analyzes chains based on application code and
table schemas (§4.1). The analysis outputs SC-cycles, if
any. Programmers can use this information to add anno-
tations or use linked chains to break the cycles (§4.2).

6 Chain execution in Lynx
We now describe how chains work at runtime. We

give an overview of the implementation (§6.1), and then
explain the details on how Lynx ensures the various
chain properties (§6.2) and how it uses system chains
(§6.3).

6.1 Overview
Chains are implemented by the Lynx client library and

server process (Figure 8). The client dispatches a chain
to its first hop, at a server storing the data accessed by
the hop. If the first hop writes data, the client chooses
the server in the shard’s home datacenter; otherwise, it
chooses a server in a nearby datacenter that has a replica.

The first server of a chain coordinates its execution in
a coordinator thread. The coordinator first stores infor-
mation about the chain in itshistory tablestored in the
cluster storage system. The history table keeps the chain
id, the chain parameters from the client, and the origin
ordering sequencer (§6.2). The coordinator may execute
the chain piecewise or as a distributed transaction.

To execute the chain piecewise, the coordinator seri-
ally executes each hop of the chain, by invoking the ap-
propriate server (the first server is local) and waiting for
a completion acknowledgement. After the first server
executes its hop, the coordinator returns an indication



Property Technique
per-hop isolation local database transactions
all-or-nothing atomicity chain replay and history table
in-chain ordering serial execution
origin ordering pairwise sequencers

Figure 9: Techniques used to ensure the chain properties
using piecewise execution.

of first-hop completion to the client library. Then, if
the server executed a hop that modified data, it spawns
in parallel sub-chains to update derived tables, if any.
These sub-chains are coordinated by the server and ex-
ecute like any other chain—in particular, Lynx ensures
origin ordering based on where the sub-chains start. The
server waits for the sub-chains to complete before send-
ing an ack to the coordinator of the higher-level chain.

If a chain cannot execute piecewise, the coordinator
executes it as a distributed transaction using standard
two-phase locking and two-phase commit [15,25].

6.2 Providing chain properties
We now explain how Lynx provides the properties of

chains (§3) when chains execute piecewise. Figure 9
gives a summary. These techniques are efficient as they
require little or no coordination across servers.

Per-hop isolation.Lynx stores each shard at one server.
Because each hop of a chain accesses one shard, we can
ensure per-hop isolation by simply executing it using a
local serializable database transaction. Our current im-
plementation requires shards to fit on a single machine,
but it is possible to generalize this to split a shard among
several machines and substitute local transactions with
distributed transactions within a single datacenter.

All-or-nothing atomicity. If the first hop of chain com-
mits, subsequent hops are executed exactly once despite
failures. Lynx ensures this property by replaying chains
that stop due to failures, using history tables to prevent
duplicate execution, as we now explain.

Recall that a coordinator orchestrates the execution
of a chain. We must address three failure types that
break chain execution: (1) crashes of a Lynx server, (2)
crashes of the coordinator, and (3) failures of an entire
datacenter.

(1) A Lynx server crashes while executing a hop.In
this case, the system recovers the server as described in
the next paragraph, and the coordinator resubmits the
hop for execution. To avoid duplicate execution, every
Lynx server keeps ahistory table, similar to [47]. This
table is kept in the same storage system as the server’s
tables; it records, for every hop that the server completes,
its chain id, hop number, and any output produced by the
hop to be passed forward in the chain. To be consistent,
the history table is updatedusing the same transaction

that updates the server tables during the hop execution.
Before executing a hop, each server checks its history
table to see whether the hop has already executed and,
if so, skips execution. This checking is also done in the
same transaction that updates the history table.

The server then notifies the coordinator that the hop
is done, attaching the hop’s output. The server deletes
the hop entry from its history table when it gets an ac-
knowledgement from the coordinator. The coordinator
updates the current progress of the chain in its history
table; it deletes the chain’s entry after the entire chain
completes.

To recover a Lynx server, the system can optionally
store the server’s data in a cluster storage system within
the datacenter. In that case, recovery is simple: the
system starts a new server and reconfigures the replica
group to replace the old server with the new one. The
new Lynx server operates on the same data as the old
server using the cluster storage system.

If the Lynx server does not use the cluster storage sys-
tem, recovery relies on geo-replication and reconstruc-
tion. Before using a geo-replica, the system must ensure
it is up-to-date, by restarting and waiting for the com-
pletion of any replication sub-chains that might be co-
ordinated by the failed Lynx server; how this is done is
explained in (2) below. Derived tables might not be geo-
replicated; these tables are reconstructed using the base
tables. Then, the system reconfigures the replica groups
to replace the failed server with a server holding the geo-
replicas or reconstructed tables.

(2) The coordinator crashes while executing a chain.
In this case, the system restarts the coordinator at another
host. The new coordinator determines the outstanding
chains using the history table of the previous coordinator,
which is kept in the cluster storage system. To handle
datacenter failures (see below), the coordinator’s clus-
ter storage system is geo-replicated at buddy datacenters
(§5.2). (Note that the cluster storage of the coordinator
is separate from the storage of a Lynx server—only the
former uses buddies; the latter is contained in a single
datacenter.) For each outstanding chain, the new coor-
dinator replays the chain from its first hop, executing
one hop at a time using the origin ordering sequencers
stored in the history table. Servers that already executed
the chain avoid duplicate execution as explained above.

(3) An entire datacenter is destroyed or becomes un-
available beyond a time threshold.In this case, the sys-
tem first recovers the Lynx servers using geo-replicas
and reconstruction, as described in (1). Then, the sys-
tem recovers from crashed coordinators, as described in
(2).

Inner ordering. This property is provided by executing



hops in the order in which they appear in the chain.

Origin ordering. A naive way to provide this property
would be for coordinators to execute one chain entirely
before starting the next chain. This scheme has low con-
currency and poor performance.

Instead, we use pairwise sequencers: each serveri
keepsn countersctri→1...ctri→n, wheren is the num-
ber of servers in the system. Serveri also keep tracks
of the latest sequence number that it has processed
from each other server,done1→i ...donen→i . Suppose a
chain with k hops is to execute on serverss1,s2, ...,sk.
The first server,s1, increments the respective counters
ctrsi→si ,ctrsi→s2, ...,ctrsi→sk for each hop of the chain
and attaches them to the chain as sequence numbers
seqsi→si

,seqsi i→s2
, ...,seqsi→sk

. Each of the serverssi

waits until its counterdonesi→si reachesseqsi→si
−1 be-

fore executing its corresponding hop in the chain.
This mechanism ensures origin ordering: suppose

chainsC1 andC2 start at the same serveri and both exe-
cute in some later hops at serverj. If C1 executes before
C2 at serveri, the sequence numberseqi→ j of chainC2

is greater than that ofC1, causingC2 to execute afterC1

at serverj. If a chain visits some serveri multiple times,
the hops ati will be assigned consecutive sequence num-
bers and thus will not be interleaved with other chains,
thereby preserving the origin ordering property.

The message overhead for enforcing origin ordering
is low: the number of sequence numbers attached to a
chain is proportional to its length. Origin order may
sometimes introduce latency overheads, but this is the
behavior we desire for consistency. Specifically, if two
chains start at the same server and follow different paths
before overlapping again at another server, the chain
with the longer execution will block the other chain.

Atomicity of linked chains. To execute a series of
linked chains, the coordinator of the first chain serves
as a super-coordinator. The super-coordinator stores the
linked chains in its history table, for recovery, and then
launches the chains one at a time at their first hop. When
the chain completes, the super-coordinator marks com-
pletion in the history table. If the super-coordinator fails,
recovery is similar to that of a coordinator.

6.3 System chains
Recall that system chains are generated internally by

Lynx to update derived tables. There are three types of
system chains, one for each type of derived table.

Chains for geo-replication. When a hop of the chain
modifies a geo-replicated base or derived table, it is for-
warded to the corresponding shard’s home datacenter for
execution. The responsible server at the home datacenter
generates a sub-chain to propagate the modification to
replicas at other datacenters. Because of the origin order-
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Figure 10: The chains for inserting a new row and updat-
ing an existing row’s secondary index. Base table T has a
secondary index table TKsec.

insert t to LT
- insert t to  LT_Kjoin 
- read tuples Y from RT_Kjoin
- insert tuples t*Y into LT_RT

read t=(x,k)
update to t' in LT

 insert t in LT
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joinkey=k 

 update t' in LT
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- delete t in LT_Kjoin 
- read tuples Y from RT_Kjoin
- delete tuples t*Y in LT_RT

- insert t' to  LT_Kjoin 
- read tuples Y from RT_Kjoin
- insert tuples t' *Y into LT_RT

Figure 11: The chains for inserting a new row and updat-
ing an existing row’s join key value. Base tables LT and
RT have secondary index tables, LTK join, RT K join (corre-
sponding to the join keyK join) and a join table LT-RT.

ing property of these sub-chains, all replicas are updated
in the same order.

Chains for secondary index tables. When a row
is inserted, deleted, or updated in a base table, the
server where the modification occurred spawns a sub-
chain to modify the index tables. (If an index ta-
ble is geo-replicated, the corresponding server at the
home datacenter generates additional sub-chains for geo-
replication.) The sub-chain has one or two hops foreach
index table: if the indexed value does not change, one
hop suffices to update the index table; if the indexed
value changes, the old and new rows of the index table
may belong to different shards, in which case two hops
are needed, one to delete the old row, the other to insert
the new row. Figure 10’s top chain shows the case where
only one hop is needed.

Chains for join views. To update materialized join
views, we apply ideas from incremental join view up-
date algorithms [16], using chains to correctly update the
views. Figure 11 shows the sub-chains for updating the
derived tableLT-RTwhich joins two base tablesLT and
RTon join keyK join. We assume that the join keyK join

is neither the primary key ofLT nor RT (the case when
the join key is a primary key is simpler). Therefore, in or-
der to create the join view, programmers are required to
add index tables (LT K join, RT K join) indexing the join
key. For updating a join view, there are two cases de-
pending on whether the base table modification changes
the existing value of the join key column. The top chain
of Figure 11 illustrates the case when no existing value



of the join key column is changed with an insert oper-
ation to the base tableLT. In this case, the sub-chain
updates bothLT’s secondary index table for the join key
(LT K join) and the join tableLT-RTusing a local read-
write transaction. The use of a local transaction is possi-
ble because the affected rows of the index and join tables
LT K join, RT K join andLT-RTare co-located in the same
shard. The bottom chain of Figure 11 is generated when
the existing value of the join key column is changed. In
this case, two additional hops are required to maintain
LT-RT, one to delete the existing value, another to add
the new value.

The join table may also have other index tables de-
rived from it. In this case, Lynx spawns parallel sub-
chains that start from the updated join table shard and
update those index tables.

The correctness of the join process is assured by two
features of the chains. First, with origin ordering, modifi-
cations on the same row ofLT interleave correctly. Sec-
ond, with per-hop isolation, the local read-write trans-
action updatingLT K join, RT K join, andLT-RTensures
that LT-RT is always the join of the secondary indexes
LT K join andRT K join. This reduces the correctness of
updating the join table to the correctness of updating sec-
ondary indexes, which is evident.

7 Implementation of Lynx
The Lynx server and client library consist of≈5000

lines of C++ code, plus 3500 lines for a custom RPC
library. Programmers specify user chains using Lynx’s
JavaScript API; a Lynx utility reads the application table
schemas and generates JavaScript objects that program-
mers uses to read and update each table. When execut-
ing a user chain, the coordinator transfers the JavaScript
code of each hop to the appropriate server, which then
caches and executes the code using the V8 JavaScript
engine.

The implementation stores tables in a custom storage
system rather than a local database system. The custom
system keeps tables in memory with transactional log-
ging to stable storage.

Our current prototype misses three pieces from the de-
sign. First, it lacks the configuration service, instead
relying on a static configuration file to indicate what
server has what shards. Second, a Lynx server has its
stable storage on a local disk, not a cluster storage sys-
tem. Third, our prototype does not yet implement the
recovery protocol (Section 6.2) for handling server or
datacenter failures.

8 Applications
We implemented three applications using Lynx: a so-

cial network website (L-Social), a microblogging ser-
vice (L-Twitter), and an auction service (L-RUBiS). The

applications use secondary indexes and join views ex-
tensively, and all of their chains can execute piecewise.
This required modifying some chains slightly (while re-
taining the same behavior). In particular, a user chain
which reads a base table and its derived table creates an
SC-cycle. We addressed this by duplicating the needed
columns of the base table in the derived table, so a user
chain needs only read the derived table.

Social networking. The L-Social application imple-
ments the basic operations of a website like Facebook
(e.g., befriending users, posting to walls). L-Social
has 5 base tables:Graph, Status, Users, Wall, Activi-
ties. There is one join tableGraphActivitieswith a sec-
ondary index to allow a user to read her friends’ activi-
ties quickly, with one lookup to the secondary index.

To befriend users A and B, the application must cre-
ate two friendship edges and two new-friend activity an-
nouncements, one for each user. A naive design uses a
chain with four user hops, two for inserting intoGraph,
two for inserting intoActivities. This chain creates an
SC-cycle with C-edges from eachGraph insertion hop
to the one-hop read-activity chain that reads the sec-
ondary index ofGraphActivities. To avoid this cycle,
we break the befriend chain into three linked chains: one
chain inserts the friendship edges, two chains each insert
once intoActivities. The first chain still has an SC-cycle
with the unfriend chain and itself. We break this cycle
by making the insertion/deletion of friendship edges a
commutative operation: we use a counter column in the
Graphtable, and we increment/decrement the counter to
insert/delete edges. This is similar to the counting sets
in Walter [53].

When user A posts a status message, L-Social uses a
chain to insert the message intoStatusand add announce-
ment “A has changed her status” inActivities. Both hops
commute with themselves. A similar chain is used to
post messages on walls. The join tableGraphActivities
allows a user to read the activities of his friends in one
hop.

A final static analysis indicates an SC-cycle: the 1-
hop read chain to show a user’s friends has an SC-cycle
with the 2-hop befriend (or unfriend) chain: the read
hop has two C-edges, to each hop of the befriend (or
unfriend) chain. We use application knowledge to deter-
mine that this SC-cycle is spurious: since a user never
befriends himself, the read hop conflicts with at most
one of the hops of the befriend chain, so only one of the
two C-edges is a real conflict.

Microblogging. L-Twitter is a simple Twitter clone with
tables and schemas modeled after [40]. There are three
tables: Users, Tweets, Graph. Graph differs from L-
Social’sGraphsince it captures an asymmetric follower
relation.



A common Twitter operation is to show a user’s
timeline—the collection of tweets posted by users that
the user follows. Twitter’s original implementation on
a one-node MySQL server performs a join query be-
tween Graph and Tweets[40]. Twitter’s current dis-
tributed implementation no longer uses joins, but rather
manually maintains the timeline of each user in mem-
cached. L-Twitter follows the original implementation
by using a distributed join tableGraphTweets(replicat-
ing only the tweet id not its text) based on the join key
Tweets.creator=Graph.followeewith a secondary index
on Graph follower. By querying this index, L-Twitter
can display a user’s timeline by contacting only one
server. We chose this much simpler implementation to
demonstrate the materialized joins of Lynx.

There are two limitations in our current design of L-
Twitter. First, when user X starts to follow Y, the un-
derlying join chain inserts all of Y’s existing tweets into
X’s timeline (the secondary index ofGraphTweets). It
would be better to insert only Y’s recent tweets. This
can be done adding a selection operation to the join
view, to filter out old tweets with a smaller timestamp
than the follow edge timestamp. Supporting such selec-
tion operations in Lynx is future work. Second, when a
user with many followers tweets, there are large over-
heads to update their followers’ timelines. Thus, our
current push-based approach should be combined with
pull-based queries for users marked as popular [52].

Auction service. L-RUBiS is a port of the auction
website in the RUBiS benchmark [1, 10]. The original
RUBiS implementation is based on PHP using a local
MySQL database system. We ported the RUBiS schema
to Lynx and re-wrote its PHP functions in JavaScript.
L-RUBiS has 10 sharded tables with 13 secondary in-
dexes in total, where a table has at most 3 secondary in-
dexes. We use a join table to unite theUsertable, which
maps uids to usernames, and theCommentstable, which
records users’ comments. This table allows L-RUBiS to
quickly find usernames of users who commented on a
seller.

There are two noteworthy user chains, one to process
bidding requests (discussed in §2), the other to handle
new user registration while ensuring unique usernames.
In our first design, a register-user chain checks if a cho-
sen username already exists in a secondary index ofUser
based on usernames; if not, the second hop inserts the
user into theUser table. This chain has an SC-cycle be-
tween two of its instances. We subsequently changed
L-RUBiS to use an additional table,Usernames, which
contains all the usernames that have ever been created.
The register-user chain first checks that the chosen user-
name is absent inUsernames(and if so inserts it there)
and in the second hop adds the user toUsers. If the
chosen username is already taken, the second hop does

nothing. The chain still has an SC-cycle with itself, but
this cycle is spurious: if two register-user chains conflict
on the first hop (due to both having the same username),
then one of the chains sees that the username is already
taken in its first hop and does nothing in its second hop,
so there are no conflicts in the second hop.

9 Evaluation
We measure the performance of Lynx and its applica-

tions across geo-distributed datacenters. The highlights
are the following:

• Applications operations have good throughput and
low-latency, despite geo-replication. Since the first
hop of all chains complete in the local datacenter, user-
perceived latency is only a few milliseconds.

• Lynx scales well. As we increase the number of
servers in each datacenter from 1 to 8, aggregate chain
throughput grows by a factor of more than 6.

9.1 Experimental setup
We perform experiments on Amazon EC2 using three

availability regions, East Coast, West Coast and Europe,
with the following roundtrip latencies between them:

West Coast Europe
East Coast 82ms 102ms
West Coast 153ms

Unless otherwise stated, in all experiments each re-
gion has 4 Lynx servers and 4 client machines, where a
machine is an extra-large instance with 15GB of RAM
and 4 virtual cores. The geo-replication factor is two
datacenters. We perform three runs for each experiment
and report the average. (Standard deviations were low.)

9.2 Microbenchmark
We evaluate three types of chains. In the simple-n

experiments, a client operation is a chain withn hops,
each inserting a row into a different base table. In the
secondary index experiment, a client operation inserts a
row into a table with a secondary index, resulting in a
system chain of 2 hops. In the join experiment, a client
operation inserts a row into theLT base table which has
both a secondary index table and a join table (with an-
other base table). In all chains, the first hop executes in
the local datacenter and the subsequent hops execute in
different remote datacenters. All chains run only C++
code at servers.

We perform two sets of experiments, one without geo-
replication, one with geo-replication factor of two. Even
in experiments without geo-replication, data is spread
over the three EC2 regions.

Chain throughput. Table 1 shows Lynx’s throughput
in thousands of chains/s. We first examine the experi-
ments without geo-replication (left of table). The simple-
1 experiment provides a baseline aggregate throughput
of 3,570K chains/s using 12 servers in 3 datacenters. We



NO GEO-REPLICATION GEO-REPLICATION AT 2 DATACENTERS

Chain type Throughput First-hop lat. Completion lat. Throughput First-hop lat. Completion lat.
(K chains/s) (50%; 99%) (50%; 99%) (K chains/s) (50%; 99%) (50%; 99%)

simple-1 3,570 3.1ms; 3.3ms 3.1ms; 3.3ms 1,770 3.1ms; 3.6ms 84ms; 90ms
simple-2 1,630 3.1ms; 3.4ms 86ms; 88ms 872 3ms; 3.8ms 266ms; 283ms
simple-3 1,190 3.2ms; 3.3ms 253ms; 257ms 512 3.1ms; 3.8ms 607ms; 656ms
secondary index 1,220 3.1ms; 3.4ms 84ms; 88ms 590 3ms; 3.3ms 258ms; 291ms
join 808 3.1ms; 3.4ms 89ms; 99ms 453 2.8ms; 3.3ms 268ms; 299ms

Table 1: Microbenchmark throughput and latency results.

expect the throughput of simple chains withmhops to be
≈1/m the throughput of a 1-hop chain. The experiments
confirm this. Throughput drops by over half going from
simple-1 to simple-2 because in simple-1 only clients
forward chains whereas in simple-2 servers also do that.

The system chain for updating the secondary index ta-
ble has two hops and its aggregate throughput is 1,220K
chains/s. This is lower than simple-2 because of the over-
head of checking if a table modification needs a system
sub-chain and if so, coordinating the system sub-chain.
The throughput of the join experiment is 808K chain-
s/s, much lower than in the secondary index experiment,
even though both chains have two hops. This is because
the second hop of the join chain requires more compu-
tation: it reads rows from theRT table and inserts them
into the join table, all in a local transaction (Figure 11).
In the experiments, we pre-populated theRTbase table
so that there are 6 rows to be read and inserted into the
join table every time a chain modifies a single row inLT.

Chain latency. Table 1 shows the median and 99-
percentile latency for completing both the first hop and
the entire chain. The experiments were done under low
load and we measured the latency of chains starting in
the West Coast. Since the first hop of a chain is in
the local datacenter, first-hop latency is below 4 ms (99-
percentile) across workloads. Although a Lynx server
synchronously writes its log to disk, the disk latency is
absorbed by on-disk caching which cannot be disabled
in EC2. Compared to the first hop latency, the total com-
pletion latency is much longer, as each subsequent hop
executes in a different datacenter. For example, the me-
dian completion latency for a simple chain of length 2
(no replication) is 86ms and it grows to 253ms when the
length is 3.

Geo-replication performance.The right part of Table 1
shows experiments where all base and derived tables are
geo-replicated at two datacenters. Geo-replication re-
duces throughput by half compared to the left results,
because it produces twice the work; and it increases com-
pletion latency due to the extra communication.
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Figure 12: L-Twitter operation throughput

9.3 Application performance
Lynx’s applications are implemented in JavaScript.

One-hop user chains and system chains need only run
C++ code at servers whilst multi-hop user chains must
execute JavaScript at servers.

L-Twitter. We evaluate three common operations:read-
timeline for showing a user’s timeline,follow-user for
starting to follow a user, andpost-tweet for posting a
tweet. We populate the database with 100,000 users,
each with 6 tweets and 6 followers on average. There
are 3 datacenters, and Lynx can have different geo-
replication levels for different tables. We geo-replicate
the base tables (Tweets, Graph) at 2 datacenters, but not
secondary indexes or joins (e.g., GraphTweets), which
can be reconstructed if there is a disaster.

Figure 12 shows the operation throughput of L-
Twitter. For operations that write data, the throughput
depends on how many hops the underlying chain has.
The chain forpost-tweet inserts a row intoTweets, up-
dates its replica across datacenters, inserts 6 rows into
the join tableGraphTweets(each user has 6 followers
on average) and updates the secondary index ofGraph-
Tweets, for a total 9 hops (6 of which run in paral-
lel). This results in an aggregatepost-tweet throughput
of 173K tweets/s. Thefollow operation also inserts 6
rows intoGraphTweets(each user has 6 existing tweets),
thus having the same number of hops aspost-tweet and
achieving similar throughput (184K ops/s). Forfollow,
all 6 updates to the secondary index ofGraphTweets
have the same secondary key and thus they could have
been batched in one RPC. Lynx does not currently have



Operation First-hop lat. Completion lat.
(50%; 99%) (50%; 99%)

follow-user 3.2ms; 3.5ms 174ms; 176ms
post-tweet 3.1ms, 3.4ms 252ms; 263ms

read-timeline 3.1ms, 3.3ms -

Table 2: Latency of operations in L-Twitter. All chains in
L-Twitter return after the first hop, so first-hop latency cor -
responds to the user-perceived latency. Completion latency
measures when the entire chain completes.

this optimization. The throughput for reading a user’s
timeline is high, at more than 1.35M ops/s. This is be-
cause the underlying chain only needs to read (many
rows) in one server.

Table 2 shows chain latency for the L-Twitter opera-
tions. All chains return after the first hop, so L-Twitter
achieves low user-perceived latency. The completion la-
tency of post-tweetmeasures how long its chain takes
to update the geo-replica ofTweets, and update the
join table GraphTweetsand its secondary index. The
99-percentile latency is 263ms, meaning that a tweet
quickly appears in all followers’ timelines.

L-RUBiS. The most interesting chain in L-RUBiS is
the place-bid operation, with a user chain of 2 hops
(Figure 7) plus 4 hops of system sub-chains for geo-
replication and secondary indexes. The aggregateplace-
bid throughput is 168K ops/s—3 times lower than the
geo-replicated simple-3 chain, which also has 6 hops
(Figure 1). This difference is becauseplace-bid runs
JavaScript user code at the servers using the V8 engine,
which imposes significant overhead, whereas the simple-
3 chain does not.

L-Social. We evaluated a common multi-hop user chain
in L-Social,post-status. Its first user hop inserts a new
status to theStatustable and the second user hop adds
a message “User X has changed her status” toActivities.
The system chains generated by the second user hop are
similar to that ofpost-tweet in L-Twitter. The overall
throughput forpost-status is 64K ops/s.

9.4 Scaling
Lynx partitions data across many shards stored at

many servers, to scale with both the number of server-
s/datacenter and the number of datacenters.

Figure 13 shows the aggregate chain throughput when
we increase the number of servers in each datacenter
from 1 to 8. The experiments always run on three data-
centers, with our largest experiments having 8× 3 =
24 Lynx servers and 24 clients. We use the simple-
3, secondary index, and join workloads (without geo-
replication) as described in Section 9.2. We see that
Lynx scales well with the number of servers. This
is expected as different Lynx chains run independently.
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Figure 13: Aggregate chain throughput as the number of
server increases in each datacenter. The experiments run
on three datacenters with no geo-replication.

With 8 servers/datacenter, the aggregate secondary index
throughput is 2.38M chains/s—6.8 times the throughput
of 0.35K chains/s for 1 server/datacenter. This is close
to linear scaling.

9.5 Comparison with Cassandra/Eiger
We compare the application performance of Lynx to

Eiger [44], a geo-replicated key-value store with write-
only transactions and causal+ consistency, built over
Cassandra [2]. We implemented the L-Twitter opera-
tions using Eiger’s column-family key-value data model.
Each userX has a row with four column families:follow-
ershas a list of sparse columns for users that followX;
followeeshas the users thatX follows; tweetshas the list
of posts written byX; andtimelinehas posts from users
thatX follows. To post a tweet, userX reads the list of
followers and uses a write-only transaction to insert the
tweet and update the followers’ timelines.

The Eiger experiments uses the same setup with 3
availability regions. We observe an aggregate through-
put of 12K tweets/s. By comparison, L-Twitter running
on Lynx achieves 173K tweets/s. Thus, Lynx has better
throughputwith serializability while Eiger offers only
causal+ consistency. Admittedly, the performance dif-
ference can be an artifact of the two systems’ implemen-
tation choices; an apples-to-apples comparison is impos-
sible.

Lynx uses much less storage space than Eiger. In L-
Twitter, Lynx geo-replicates base tables only once and
derived tables zero times, which suffices for disaster tol-
erance. By contrast, Eiger forces all data to be replicated
at all datacenters, causing a large space overhead.

10 Related work
Geo-distributed storage.Geo-distributed systems face
the unpleasant tradeoff between strong semantics and
low latency. Spanner provides strong semantics with
order-preserving serializable transactions [25], but these



are expensive: like its predecessor Megastore [13], Span-
ner’s update transactions take many cross-datacenter
roundtrips to execute and commit. Replicated Com-
mit [?] and MDCC [41] are faster but still incur cross-
datacenter latency to execute and commit.

At the other end of the tradeoff, Cassandra [2] and
Dynamo [27] are key-value stores offering eventual con-
sistency and PNUTS [24] offers the slightly stronger
per-record timeline consistency. Other systems pro-
vide stronger but still relaxed semantics to achieve low-
latency. COPS/Eiger [43, 44] offer causal+ consistency
write-write conflicts that are resolved deterministically.
These systems do not support general transactions and
require replication of all data across all datacenters. Wal-
ter provides parallel snapshot isolation [53] and Gemini
provides Red/Blue consistency [42]. Apart from weak-
ened semantics, the latter two systems do not have a scal-
able design within a datacenter.

Single datacenter storage systems. Since the net-
work latency within a single datacenter is low (sub-
millisecond), it is generally agreed that the storage sys-
tem should provide strong consistency.

The late 80s saw pioneering work in distributed
database systems, such as Gamma [28], Bubba [18],
R* [45], Teradata and Tandem [29], which aim to the
provide the same transactional updates and query inter-
faces present in centralized database systems. These
systems pioneered distributed transactions using locking
and two-phase commit [18,28,45].

Modern single-datacenter storage systems offer vari-
ants of the key/value interface (BigTable [21], H-
Base [3], MongoDB [5]). Recently, there has also been
strong interest in transactions, e.g. in Sinfonia [9], Per-
colator [46], and H-store/VoltDB [39]. These systems
provide distributed transactions using two-phase com-
mit, which is efficient within a datacenter. The Hyper-
Dex key-value store [30] uses value-dependent chains to
update replicas consistently within a datacenter. Value-
dependent chains provide a property similar to chain’s
origin ordering.

View maintenance in database systems.There is much
work on maintaining materialized views. Incremental
maintenance schemes typically update base tables and
views in the same ACID transaction [16]. Deferred main-
tenance schemes batch changes to tables, and update
views periodically or when there is a query [23, 38, 58],
for efficiency. Deferred maintenance is often used in
data warehouses where only one update batch executes
at any time [48]. In the same spirit, LazyBase [22] op-
timizes data analytics by batching writes and updating
materialized secondary indexes in epochs.

Only a few systems offer online distributed view main-
tenance and even fewer do so in a geo-distributed setting.

BigTable now supports secondary indexes [20]. PNUTS
added support for secondary indexes and join views that
are asynchronously updated [8]. Lynx also updates de-
rived tables asynchronously, in piecewise chains. Unlike
PNUTS, Lynx uses static analysis to provide serializabil-
ity despite asynchronous updates.

Workflow Management [57]. Transaction chains re-
sembles application workflows in systems like travel
planning or insurance claim processing. An application
workflow naturally consists of many activities, each ex-
ecuting as a transaction. Like Lynx, workflow systems
guarantee that all activities are eventually executed com-
pletely and exactly once. However, these systems are de-
signed to manage sophisticated workflows often involv-
ing people actions, while Lynx uses chains to efficiently
execute a logical transaction while guaranteeing that the
entire chain is serializable as a single transaction.

Transaction Decomposition. The database commu-
nity has explored various aspects in decomposing
a transaction in smaller pieces using SAGAS [33],
step-decomposed transactions [14], transaction
chopping [51], multi-database transactional man-
agement [19] and Spheres of Control (SoC) [26, 37].
Garcia-Molina observes that if various pieces of a
decomposed transaction commute, a safe execution
schedule always exists [32]. Lynx also exploits
commutativity, inspired by this and other work includ-
ing Walter [53], Gemini [42], and conflict-free data
types [50]. In addition to commutativity, Lynx also
provides the origin ordering property to reduce conflicts
among system chains.

11 Conclusion
Lynx provides serializability with low-latency in geo-

distributed storage systems. The key insight is to express
transactions as transaction chains with multiple hops,
and then perform a global static analysis of the chains,
to find conflicts and determine when chains can execute
piecewise without violating serializability. Chains are
also useful for providing several features: secondary in-
dexes, materialized join views, and geo-replication. We
demonstrated the use of Lynx in an auction service, a
microblogging service, and a social networking site.
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