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Abstract

Recent technological trends indicate that future datacen-

ter networks will incorporate High Performance Com-

puting network features, such as ultra-low latency and

CPU bypassing. How can these features be exploited

in datacenter-scale systems infrastructure? In this pa-

per, we explore the design of a distributed in-memory

key-value store called Pilaf that takes advantage of Re-

mote Direct Memory Access to achieve high perfor-

mance with low CPU overhead.

In Pilaf, clients directly read from the server’s mem-

ory via RDMA to perform gets, which commonly

dominate key-value store workloads. By contrast, put

operations are serviced by the server to simplify the

task of synchronizing memory accesses. To detect in-

consistent RDMA reads with concurrent CPU memory

modifications, we introduce the notion of self-verifying

data structures that can detect read-write races without

client-server coordination. Our experiments show that

Pilaf achieves low latency and high throughput while

consuming few CPU resources. Specifically, Pilaf can

surpass 1.3 million ops/sec (90% gets) using a single

CPU core compared with 55K for Memcached and 59K

for Redis.

1 Introduction

The network implementations found in High Perfor-

mance Computing (HPC) clusters have historically dif-

fered from those in datacenters in a few key aspects: low

latency, low CPU overhead, and high cost. Recent trends

in the networking world indicate that these distinctions

are beginning to disappear as HPC network prices drop

and datacenter network equipment begins to adopt fea-

tures previously found only in HPC clusters. Products

are already being offered that implement kernel or CPU

bypassing (two common HPC network features) over

10Gbps Ethernet [30, 24], while the prices for the pop-

ular Infiniband HPC interconnect have dropped dramat-

ically and are now competitive with 10Gbps Ethernet

hardware. For example, a Mellanox 40Gbps Infiniband

adapter costs ∼$500, while 10Gbps Ethernet cards range

in price from ∼$300 to $800. Surprisingly, low-latency

Infiniband switches are now less expensive than their

10Gbps Ethernet counterparts. Given these changes, it

is important that we understand how to leverage the

features of these high-performance networks to build

general-purpose applications. In this paper, we focus on

how to effectively use Remote Direct Memory Access

(RDMA), a common component of high performance

networking fabrics.

RDMA operations allow a machine to read (or

write) from a pre-registered memory region of another

machine without involving the CPU on the remote

side. Compared to traditional message passing, RDMA

achieves the smallest round-trip latency (∼3µs), high-

est throughput, and lowest (zero) CPU overhead. These

advantages are offset by the difficulty of incorporating

RDMA into distributed system designs. In a traditional

design, the server processes all service requests from

clients and thus acts as a single point of coordination for

memory accesses. With RDMA, clients can directly ac-

cess the server’s memory to implement a service request

without any involvement by the server. However, with-

out the server’s coordination, races in memory accesses

by different machines become a serious concern.

In this paper, we present Pilaf, a distributed in-

memory key-value store that leverages RDMA to

achieve high throughput with low CPU overhead. We ar-

gue that the sweet spot in the design space is to restrict

the use of RDMA to read-only service requests, namely

gets, while letting the server handle all other requests

via traditional messaging. As practical key-value work-

loads tend to be dominated by read operations [1], this

approach can capture most of RDMA’s performance

benefits while facilitating a much simpler design than

using RDMA for all types of requests. In particular, this

approach restricts the class of memory access races that

can occur: clients might read inconsistent data while the

server is concurrently modifying the same memory ad-

dresses.

We use self-verifying data structures to address read-

write races between the server and clients. A self-
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verifying data structure consists of checksummed root

data objects as well as pointers whose values include a

checksum covering the referenced memory area. Start-

ing from a set of root objects with known memory loca-

tions, clients are guaranteed to traverse a server’s self-

verifying data structure correctly, because the check-

sums can detect any inconsistencies that arise due to

concurrent memory writes done by the server. When a

race is detected, clients simply retry the operation.

Other projects have also used RDMA to enhance

the performance of Memcached-like key-value stores

[28, 14, 13]. In these designs, RDMA is treated simply

as a means for accelerating standard message-passing;

the server still handles all service requests. In contrast,

in Pilaf, clients can process get requests without in-

volving the server process at all, resulting in optimal

(zero) CPU overhead. To the best of our knowledge,

Pilaf is the first system design where clients can com-

pletely bypass the server’s CPU for processing read re-

quests.

We have implemented Pilaf on top of Infiniband, a

popular HPC network interconnect. Our experiments on

a cluster of machines equipped with 20Gbps Infiniband

cards show that Pilaf achieves high performance with

very low CPU overhead. In a workload consisting of

90% gets and 10% puts, Pilaf achieves 1.3 million

ops/sec while utilizing only a single CPU core, com-

pared to 55K for Memcached and 59K for Redis.

2 Opportunities and Challenges

This section gives an overview of RDMA and other HPC

networking features and discusses how they might im-

pact the design of distributed systems. Our discussion

of the performance implications is based on Infiniband,

a popular HPC interconnect.

Manufactured by Intel and Mellanox, Infiniband

hardware provides 10, 20, or 40 Gbps of bandwidth in

each direction. Applications running on top of Infini-

band have several communication options:

IP over Infiniband (IPoIB) emulates Ethernet over In-

finiband. As with normal Ethernet, the kernel pro-

cesses packets and copies data to application mem-

ory. IPoIB allows existing socket-based applica-

tions to run on Infiniband with no modification.

Send/Recv Verbs provide user-level message ex-

change: these Verbs messages pass directly

between user space applications and the network

adapter, bypassing the kernel. Send/Recv Verbs

are commonly referred to as two-sided operations

since each Send operation requires a matching

Recv operation at the remote process. Unlike

IPoIB, applications must be rewritten to use the

Verbs API.

RDMA allows full remote CPU bypass by letting one

machine directly read or write the memory of an-

other machine without involving the remote CPU.

Unlike Send/Recv Verbs, RDMA operations are

one-sided, since an RDMA operation can com-

plete without any knowledge of the remote process.

RDMA is technically a type of Verbs. In this pa-

per, we use the term RDMA specifically to refer to

RDMA Verbs and the phrase verb messages to re-

fer to Send/Recv Verbs, both of which we use in

reliable mode.

We note that Infiniband is not the only network to

support RDMA and user-level networking. Similar fea-

tures have recently been made available in 10 Gbps Eth-

ernet environments. For example, both Myricom and

Solarflare offer 10GE adapters that support kernel by-

pass, and Intel offers 10GE iWARP adapters capable

of RDMA over Ethernet. Although it remains unclear

which specific hardware proposal will dominate the dat-

acenter market, one can realistically expect future data-

center networks to support some form of CPU bypass-

ing.

2.1 Performance Benefits of RDMA

How fast and efficient is RDMA? How does its perfor-

mance compare to alternatives such as verb messages or

traditional kernel-based TCP/IP transport? We answer

these questions by benchmarking the various Infiniband

communication options.

Our experiments were run on a small cluster of ma-

chines equipped with Mellanox ConnectX-2 20Gbps

Infiniband cards. For RDMA experiments, each client

node performs RDMA reads on the server. For verb

message experiments, each client node issues a request

(as a verb message in reliable mode) to which the server

responds immediately with a reply. The IPoIB and Eth-

ernet experiments are similar except that we use TCP/IP

for exchanging requests and replies. We vary the size of

the RDMA read or the request message while fixing the

reply size at 10 bytes.

Figure 1 shows the roundtrip latencies of different

communication methods. For small operations (< 256
bytes), a verb message exchange takes less than 7µs,

while the RTT of IPoIB or Ethernet is over 60 µs. Our

Infiniband switch imposes a lower delay than our Eth-

ernet switch, but the IPoIB latency is similar to that

of Ethernet, suggesting that packet processing through

the kernel adds significant latency. RDMA achieves the

lowest RTT (∼3µs), half that of verb messages. This is

because the request/reply pattern of traditional messag-

ing involves two underlying Verbs exchanges. By con-

trast, an RDMA operation involves only one underlying

Verbs exchange, thereby halving the latency.
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Figure 1: Median round-trip latency. The error bars depict 1%

and 99% latency.
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Figure 2: Server’s network throughput under different com-

munication methods.

Throughput (M ops/sec)

Transport 16-byte 1024-byte

RDMA 2.449 1.496

Verbs Message 0.668 0.668

IPoIB 0.126 0.122

Ethernet (1Gbps) 0.120 0.068

Table 1: Throughput (in million operations/sec) for 16 byte

and 1Kbyte operations.

Figure 2 shows the throughput (in Kbps) achieved by

the server. Since different communication methods in-

cur varying CPU overhead, we limit the server’s CPU

consumption to a single core (AMD Opteron 6272) in

all experiments. In Figure 2, large operations (>1024
bytes) over all communication methods except IPoIB

can saturate their respective network’s peak through-

put. For smaller operations, both RDMA and Verbs mes-

sages are able to saturate the Infiniband network card’s

capacity when running the server on a single CPU core.

By contrast, kernel-based transports require more than

one core to saturate the network card, hence the much

lower throughputs achieved in IPoIB and Ethernet ex-

periments.

RDMA not only incurs zero CPU overhead on the

server, it also saturates the network card at the high-

est operation throughput. As shown in Table 1, a server

can sustain 2.45 million operations/second with 16-byte

RDMA reads. By contrast, the server can only achieve

0.668 million operations/sec when exchanging Verbs re-

quest/reply messages. There are two reason for this per-

formance gap. First, each request/reply exchange uses

two underlying Verbs exchanges compared to one for

RDMA. Second, because the card does less bookkeep-

ing for RDMA, the achieved RDMA throughput is more

than twice that of of just sending or receiving verb mes-

sages.

2.2 Opportunities for System Builders

As we have seen, bypassing the kernel and CPU al-

lows for reduced latency and CPU overhead. Of these

two, CPU bypass via RDMA is particularly powerful in

that it achieves the highest throughput while incurring

zero CPU overhead. As future datacenter networks em-

brace RDMA, how should we design datacenter infras-

tructures such as distributed storage systems? To bet-

ter understand the ensuing opportunities and challenges,

we have chosen to build a distributed key-value store to

exploit RDMA. We decided to use the key-value store

as a case study system because it is a popular infras-

tructural service with demanding performance require-

ments [21]. Key-value stores are also used as a building

block for other more sophisticated storage systems (e.g.

BigTable [2], Spanner [4], Cassandra [17]) or distributed

computation frameworks (e.g. Piccolo [23]).

Our experience in exploring the design space for a

key-value store leads to two observations, both of which

are applicable to other distributed systems besides key-

value stores.

High performance is feasible with fewer CPU re-

sources. With traditional Ethernet-based distributed

systems, the performance bottleneck is often the CPU

despite the availability of multiple cores [20]. With ker-

nel and CPU bypass, servers can saturate the network

using many fewer cores. The improvement in CPU effi-

ciency is particularly notable with RDMA, which poten-

tially allows clients to process service requests without

involving the server at all. Efficient CPU usage is crucial

in datacenters, which often operate a shared environ-

ment by running multiple applications on a single ma-

chine [6]. With less CPU overhead, one can pack more

applications onto each machine, use fewer machines,

rely on wimpier cores [28] and yet achieve the same or

better performance.
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Multi-round operations are practical. Because the

roundtrip latency on Ethernet is substantial, traditional

systems designs aim to minimize the rounds of com-

munications required to complete an operation. For ex-

ample, existing key-value stores process each get or

put operations in one roundtrip. With RDMA’s ultra-

low latency, it becomes feasible to use multi-round pro-

tocols without adversely affecting end-to-end operation

latency. For example, each get operation in Pilaf re-

quires at least two roundtrips, yet the end-to-end latency

is less than 30µs.

Challenges. It is technically challenging to fully ex-

ploit RDMA’s performance advantage in a system de-

sign. The common existing practice is to use RDMA to

optimize verb message exchange [19, 14, 12]. Specif-

ically, in order to send (or receive) a large message,

a client first transmits some control information to the

server using a verb message. The server then performs

an RDMA read (or write) to the client to fetch (or

store) the actual payload. This design maintains the tra-

ditional request/reply communication pattern, but does

not fully exploit the benefits of RDMA since the over-

all latency and throughput is still bottlenecked by send-

ing/receiving verb messages.

A more efficient system design is one in which all

or a large fraction of the existing request/reply traffic

is replaced (instead of supplemented) by RDMA opera-

tions. However, letting clients directly perform RDMA

on the server’s memory introduces serious synchroniza-

tion problems: not only can multiple clients’ concurrent

RDMA accesses cause races, but the server can also si-

multaneously perform local memory accesses that race

with remote accesses. While there are some hardware

mechanisms for synchronizing RDMA accesses, there

exist no efficient capability at all for coordinating local

and remote memory accesses.

3 Pilaf Design

This section traces the evolution of Pilaf’s design up

to its current form. We first motivate Pilaf’s overall

architecture, which processes write operations at the

server and uses RDMA for read-only operations (Sec-

tion 3.1). We then explain how clients perform gets us-

ing RDMA reads and discuss how Pilaf synchronizes

clients’ RDMA accesses with the server’s local memory

writes. Last, we describe the Cuckoo hashing optimiza-

tion that reduces the number of required roundtrips in

the worst case.

3.1 Overview

The most straightforward design would be to take a tra-

ditional key-value store and re-implement its messag-

ing layer using verb messages instead of TCP sock-

ets. However, this design fails to reap the benefits of

RDMA, which has much lower latency and CPU over-

head than verb messages. Therefore, our goal is to find

a system design that can exploit one-sided RDMA oper-

ations without adding too much complexity.

A key-value store has two basic operations: V ←

get(K) and put(K,V ), where both the key K and value

V are strings of arbitrary length. In our initial design it-

erations, we tried to use one-sided RDMA operations

for both gets and puts. In other words, each client

performs RDMA reads to implement gets and RDMA

writes to implement puts.

We quickly discovered that using RDMA for all oper-

ations leads to complex and fragile designs. First, clients

must synchronize their RDMA writes so as not to cor-

rupt the server’s memory. The Infiniband card supports

atomic operations (such as compare-and-swap) on top

of which one could build an explicit locking mechanism

or implement a lock-free data structure [10]. Locking in-

troduces the complication of clients failing while hold-

ing a lock. On the other hand, lock-free implementations

are complex and require remote dynamic memory allo-

cation. Second, a put operation requires memory allo-

cation to store key-value strings of arbitrary length; such

memory management becomes unwieldy in the pres-

ence of remote writes. Having clients implement mem-

ory management remotely is expensive, with excessive

locking and round trips required. On the other hand, let-

ting the server perform memory management introduces

write-write races between the server and clients. Unfor-

tunately, there exists no efficient hardware mechanism

to synchronize memory accesses initiated by the CPU

and the network card. Last but not least, by making all

operations transparent to the server, debugging becomes

painful, as race conditions involving remote accesses are

much more difficult to find and reproduce than those in-

volving local accesses.

Our first major design decision is to have the server

handle all the write operations (i.e. put and remove)

and have the clients implement read-only operations (i.e.

get and contains) using one-sided RDMA reads.

Since real-world workloads are skewed towards reads

(e.g., Facebook reported read-to-write ratios ranging

from 68%-99% for its active key-value stores [1]), this

design captures most of the performance benefits of

RDMA while drastically simplifying the problem of

synchronization. In fact, the beauty of this design is that

it incurs no write-write races, but only read-write races

between RDMA reads and the server’s local memory

writes, Write-write races are the main source of design

complexities since they must be avoided at all costs to

prevent memory corruption. In contrast, read-write races

can be made harmless by simply detecting the presence

of such races and re-trying the affected operation. Thus,

no fragile and expensive locking or lock-free protocol is
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needed.

Figure 3 shows Pilaf’s overall architecture. Using

verb messages, clients send all put requests to the

server, which inserts them in its in-memory hashmap

before sending the corresponding replies. By contrast,

gets are transparent to the server in that the clients per-

form RDMA reads over multiple roundtrips to directly

fetch data from the server’s memory.

As in other key-value store designs [20, 25], the Pilaf

server has the option to asynchronously log updates to

its local disk.

Verb
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Read

RDMA

Read

Server

<put>

Client 

Process
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Process
Client

<get>

Memory

Verb
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Client 

Process
Client 

Process
Client
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Write

Infiniband HCA Infiniband HCA Infiniband HCA
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put

Figure 3: Pilaf restricts the clients’ use of RDMAs to read-

only get operations and handles all puts at the server using

verb messages.

3.2 Basic get Operation Using RDMA

We first explain how Pilaf performs gets without in-

volving the server’s CPU. We defer the challenge of cop-

ing with concurrent puts and gets to Section 3.3.

To allow RDMA reads, the server must expose its data

structure for storing the hash table, as shown in Figure 4.

There are two logical memory regions: an array of fixed

size hash table entries and an extents area for storing

the actual keys and values, which are strings of arbitrary

length. The server registers both memory regions with

the network card, and clients obtain the corresponding

registration keys of these two memory regions (as well

as the size of the hash table array) when they first estab-

lish a connection to the server. Subsequently, clients can

issue RDMA requests to any memory address in these

two regions by specifying the memory’s registration key

and an offset.

In the basic design, a client looks up a key in the

hash table array using linear probing [26]. Each probe

involves two RDMA reads. The first read fetches the

hash table entry corresponding to the key. If the entry is

currently filled (indicated by an in use bit), the client

initiates a second RDMA read to fetch the actual key

and value strings from the extents region according to

the address information stored in the corresponding hash

table entry. The client checks whether the fetched key

string matches the requested key. If so, the get oper-

ation finishes. Otherwise, the client continues with the

next probe.

Client

server memory

hash entries key/value extent

"key1, value1"

"key2, value2"

1. read 

the hash entry

2. read the 

key value string

Figure 4: The memory layout of the Pilaf server’s hash ta-

ble. Two memory regions are used, one contains an array of

fixed-size hash table entries, the other contains variable sized

key-value strings (extents). To perform a get, clients probes

the server’s hash table using two RDMA reads, first fetching

a hash table entry, then using the address information in that

entry to fetch the associated key-value string.

3.3 Coping with Read-Write Races

The Pilaf server handles all put operations. Thus, local

memory writes performed by the server’s CPU can cre-

ate read-write races with concurrent RDMA reads done

by clients. This is a challenge as there exists no efficient

hardware mechanism to coordinate the CPU and the net-

work card. To inhibit RDMA reads during a write, the

server could resort to resetting all existing connections,

or temporarily de-register memory regions with the net-

work card. However, both mechanisms are far too ex-

pensive to be used for every put operation. Therefore,

we must be able to cope with the presence of read-write

races.

To implement a read operation, clients need to tra-

verse the server’s data structure. The traversal starts

from a set of “root” objects with known memory loca-

tions and recursively follows pointers read previously. In

the context of Pilaf, we can view each hash table entry

as a “root” object which points to additional key-value

information. Read-write races introduce the possibility

that clients can traverse the server’s data structure incor-

rectly.

Two scenarios can result in incorrect traversal. First, a

root object can be corrupted. In Pilaf, this happens when

the server modifies a hash table entry while a client is

reading that entry. Consequently, the client will read a

partially-modified (and thus incorrect) hash table entry,

potentially causing it to read the key-value string from a

wrong memory location. Second, a client’s pointer ref-

erence can become invalid. For example, in Pilaf, the

server may delete or modify an existing key/value pair

while a client is holding a pointer reference to the old

string from its first RDMA read of the hash table entry.

Thus, during its second RDMA access, the client might

read garbage or an incorrect key-value string.
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To permit correct traversal in the face of read-write

races, we introduce the notion of a self-verifying data

structure by making both root objects and pointers self-

verifying. For a root object, we append a checksum that

covers the object’s entire contents. Thus, any ongoing

modification on the root object results in a checksum

failure. To make a pointer self-verifying, we store it as

a tuple combining a memory location, the size of the

memory chunk being referenced, and a checksum cov-

ering the contents of the referenced memory. Therefore,

a client can detect inconsistencies between a pointer’s

intended memory reference and the actual memory con-

tents. For example, if the server de-allocates the mem-

ory chunk being referenced and re-uses parts of it later

while a client is still holding a pointer to it, the client will

fail to verify the checksum when it retrieves the mem-

ory contents using the old pointer. Figure 5 shows Pilaf’s

self-verifying hash table. As a root object, each hash ta-

ble entry contains a checksum covering the whole en-

try. The pointer stored in each hash table entry contains

a checksum verifying the key-value string being refer-

enced.

Self-verifying data structures ensure correct traversal

starting from a set of known root object locations. On

rare occasions, the server may need to change the root

object locations. This can be accomplished correctly by

having the server reset all its existing RDMA connec-

tions to clients to inhibit clients from reading stale root

object locations. In Pilaf, whenever the server needs

to resize its hash table array, it disconnects all clients.

Clients reconnect once the resize operation is complete

to obtain up-to-date information about the location and

size of the hash table array. Since hash table resizing is

infrequent, there is a minimal performance penalty from

resetting connections.

A self-verifying data structure allows clients to per-

form consistent reads in the face of concurrent writes. In

addition, the Pilaf server uses a memory barrier to force

any updates from the CPU cache to the main memory

before replying to a put request. Doing so ensures that

a subsequent get always reads the effect of any com-

pleted puts. As a result, Pilaf provides the strongest

consistency semantics, i.e. linearizability [11].

3.4 Improving a Hash Table’s Memory Efficiency

In the basic design, a client performs linear probing to

look up a key in the server’s hash table array. This simple

hash scheme does not achieve a good tradeoff between

memory efficiency and operation latency. For example,

when the hash table is 60% full, the maximum number

of probes required can be as high as 70. To achieve good

memory efficiency with fewer probes, Pilaf uses n-way

Cuckoo hashing [22, 16]. This hashing scheme uses n

orthogonal hash functions, and every key is either at one

hash table entry (root object) 

in_use
hash func 

used

key/value 

pointer
checksum

key

key size
key/value 

size
checksum

value

Figure 5: Self-verifying hash table structure. Each hash table

entry is protected by a checksum. Each entry stores a self-

verifying pointer (shown in shaded fields) which contains a

checksum covering the memory area being referenced.

of n possible locations or absent. If all n possible loca-

tions for a new key are filled, the key is inserted anyway,

kicking the resident key-value pair to one of that key’s

alternate locations. That operation may in turn kick out

another pair, ad infinitum. The table is resized when a

limit is reached on the number of kicks performed or

when a cycle is detected.

The main challenge in using Cuckoo hashing for Pilaf

lies in the process of moving an existing entry to a differ-

ent hash table location. Ordinarily, bulk key movements

such as resizing the hash table requires that the server

reset all existing RDMA connections. This is not desir-

able, as the need to move a key occurs much more fre-

quently than table resizing with Cuckoo hashing. With-

out resetting connections, there is the danger that a key-

value pair might appear to be “lost” to the clients while

the server is moving it to a new location. To address this

issue, during a put operation the server first calculates

the new locations of every affected key without actu-

ally moving the keys. Then, starting from the last af-

fected key, the server shifts each key to its new location,

thereby ensuring that a key is always stored in at one

or two (instead of zero or one) hash table entries during

movement.
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We explored different parameter values for n and de-

termined that 3-way Cuckoo hashing achieves the best

memory efficiency with few hash entry traversals per

read. As Figure 6 shows, at a fill ratio of 75%, the aver-

age and maximum number of probes in 3-way Cuckoo

hashing is 1.6 and 3, compared to 2.5 and 213 respec-

tively for linear probing.

4 Implementation

We implemented Pilaf in C++. Pilaf uses the

libibverbs library from the OpenFabrics Alliance,

which allows user-space processes to use verb messages

and RDMA directly. The Pilaf server continuously polls

the network card for new events, including the recep-

tion of verb messages or the completion of recently-sent

RDMA operations or verb messages. Since Pilaf is able

to saturate the network card’s performance using a sin-

gle thread, our implementation uses the same polling

thread to process puts as well.

RDMA-Friendly Extents: The server must register

a region of memory and gives clients the registration

key for that memory before clients can perform RDMA

on the region. This process is relatively expensive and

should be made infrequent. Therefore, Pilaf allocates

and registers a large contiguous address space for the

key-value extent. We ported the mem5memory manage-

ment unit from SQLite to C++ to “malloc” and “free”

strings in the key-value extent. Whenever the extents

region becomes full, the server resets all existing con-

nections, expands the extents, and then allows clients

to re-connect and obtain new registration keys. As with

hash table resizing, extents-resizing is also an infrequent

event.

Self-Verifying Data Structures: Our implementation

uses CRC64 as the checksum scheme for our self-

verifying data structures. CRCs are not effective for

cryptographic verification. Instead, they were originally

intended to detect random errors, making them ideal for

our application. The ideal n-bit CRC will fail to detect 1

in 2n message collisions. Although 32-bit CRC is popu-

lar (e.g. for Ethernet and SATA checksums), we believe

that CRC32 is insufficient for Pilaf. Every put incurs

two CRC updates, one on the hash table entry and one

on the key-value string. As will be shown in Section

5.2, Pilaf can process 663K puts per second. There-

fore, up to 1.326 million CRCs may be calculated per

second. Since each CRC32 incurs a collision with prob-

ability 1 in 232, we expect a collision once every 3239

seconds (54 minutes). We find this rate to be unaccept-

ably high. Using CRC64, we can expect a collision once

every 1.35 ∗ 1013 seconds, or once per 428 millenia.

CRC64 is fast. Our implementation consumes about

a dozen CPU cycles for each checksummed byte, and

incurs the same overhead as CRC32 when running on

64-bit CPUs.

Logging: By default, Pilaf server asynchronously logs

all put and delete operations to the local disk, sim-

ilar to the logging facility in other key-value stores in-

cluding Redis [25], Masstree [20] and LevelDB [8]. Us-

ing a single solid state disk, Pilaf is able to log 663K

(our peak put throughput) writes per second if the av-

erage key-value size is smaller than 500 bytes. Should

one desire a high logging capacity, multiple SSDs must

be used.

5 Evaluation

We evaluate the performance of Pilaf on our Infiniband

cluster. The highlights of our results are the following:

• Pilaf achieves high performance: its peak through-

put reaches 1.3 million ops/sec. The end-to-end

operation latency is very low with a 90-percentile

latency of ∼30µs.

• Pilaf is CPU-efficient. Even when running on a sin-

gle CPU core, Pilaf is able to saturate the network

hardware’s capacity to achieve 1.3 million ops/sec.

By comparison, Memcached and Redis achieve

less than 60K ops/sec per CPU core, so they require

at least 20× the CPU resource to match Pilaf’s per-

formance.

• Self-verifying data structures are effective at

detecting read-write races between the clients’

RDMA operations and the server’s local memory

accesses.

5.1 Experimental setup

Hardware and configuration. Our experiments are

run on a cluster of ten machines, each with two AMD or

Intel processors and 32GB of memory. Each machine is

equipped with a a Mellanox ConnectX-2 20 Gbps Infini-

band HCA as well as an Intel gigabit Ethernet adapter.

The machines run Ubuntu 12.10 with the OFED 3.2 In-

finiband driver.

For each experiment, we run a server process on

one physical machine, while the clients are distributed

among the remaining machines to saturate the server.

By default, we restrict the server process to run on one

CPU core. For Ethernet experiments, we configure the

kernel’s network interrupt processing to trigger on the

same core used by the server process.

We disable Pilaf’s asynchronous logging in the ex-

periments. With logging turned on, Pilaf incurs no mea-

surable reduction in achieved throughput for key-value

sizes less than 500 bytes. With larger operations, the I/O

bandwidth of the server’s single local SSD becomes the

bottleneck.
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Workload. We use the YCSB [3] benchmark to gen-

erate our workloads. YCSB constructs key-value pairs

with variable key and value lengths, modelled on the sta-

tistical properties of real-world workloads. Furthermore,

with YCSB, the keys being accessed follow a long-tailed

zipf distribution. The original YCSB software is written

in Java. We ported it to C so that we could saturate the

server with fewer client machines.

In all experiments, we vary the size of the value string

from 16 to 4096 bytes while keeping the average key

size at 23 bytes, the default value in YCSB. We use two

mixed workloads, one consisting of 10% puts and 90%

gets, the other 50% puts and 50% gets. Since Face-

book has reported that most of their Memcached deploy-

ments are read-heavy [1], our mixed workloads give rea-

sonable representations of real workloads.

Points of comparison. We compare Pilaf against

Memcached [7] and Redis [25] (with logging disabled).

Additionally, we also compare Pilaf to an alternative im-

plementation of itself, which we refer to as Pilaf-VO

(short for Pilaf using Verb messages Only). In Pilaf-

VO, clients send all operations (including gets) to the

server for processing via verb messages. The perfor-

mance gap between Pilaf and Pilaf-VO demonstrates the

importance of bypassing the CPU using RDMA.

5.2 Microbenchmarks

The microbenchmarks measure the throughput and la-

tency of individual get and put operations.

Throughput: Figure 7 shows Pilaf’s peak operation

throughput, achieved with 40 concurrent clients. Pilaf

can perform 1.28 million get and 663K put opera-

tions per second for small key-values. Of note is that

Pilaf’s high throughput is achieved using a single CPU

core, which saturates the Infiniband card in most cases.

Performing get operations via RDMA incurs zero

CPU overhead on the server. Furthermore, get opera-

tions also have the highest throughput. As shown in Ta-

ble 1 (Section 2), the card’s peak RDMA throughput is

much higher than that of verb messages, especially for

small messages. In particular, the card can satisfy 2.45

million RDMA reads per second for small reads. Since

each get requires at least two RDMA reads, the over-

all throughput is approximately half of the raw RDMA

throughput at 1.28 million gets/sec. By contrast, the

peak verb throughput is 667K request/reply pairs/sec for

small messages, resulting in 667K ops/sec for puts.

For larger key-value pairs, the throughputs of get

and put converge as they both approach the network

bandwidth. For example, for 4096-byte key-values, Pilaf

consumes 11.7Gbps of the 16Gbps data bandwidth sup-

ported by the network card. Interestingly, we find that

when processing puts with large values, the Pilaf server

becomes CPU-bound when using a single core. Specifi-

cally, for 1024-byte value size, Pilaf achieves 75.4% of

its network-bound put throughput (543K ops/sec) with

one core and 100% (663K ops/sec) with two cores.

We also measure the throughput of Pilaf-VO’s get

operation, which is processed by the server instead of

by the clients using RDMA. As Figure 7 shows, the

throughput of performing gets using verb messages is

similar to that of puts and is much smaller than the

throughput of gets done via RDMA for small key-

value pairs.
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Figure 7: Server throughput for put and get in Pilaf and

get in Pilaf-VO. All tests are performed with 40 connected

clients.

Latency: Figure 8 shows the average latency of get

and put operations with 10 concurrent clients. With a

larger number of clients (e.g. 40), the latency becomes

mostly determined by queuing effects and thus is much

higher. With a single client (not shown in the figure), the

latency of get is slightly more than 2 RDMA roundtrips

and is twice the latency of put. With more clients and

thus more load, we found that the RDMA latency scales

better than that of verb messages. As Figure 8 shows,

for 10 clients, average latency for small gets is 10µs,

while small puts take around 8µs. For large key-values,

the latencies of get and put are similar and are both

bounded by the packet transmission time.

5.3 Performance of self-verifying data structure

Pilaf uses a self-verifying hash table structure to detect

read-write races during concurrent gets and puts. We

expect such races to be rare in a normal workload. To

artificially vary the conflict rate, we inject the maximum

achievable get and put loads, simultaneously reading

and writing a varying number of unique key-value pairs.

Therefore, the probability of races increases as the gets

and puts are restricted to fewer and fewer unique keys.

Figure 9 shows the probability of detecting a read-

write race as measured by the fraction of gets that need
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Figure 8: Average operation latency for put and get oper-

ations as the average value size increases. All tests are per-

formed with 10 connected clients; though not pictured, we ob-

serve a linear relationship between the number of connected

clients and latency due to queuing effects.

to be re-tried. The two lines in Figure 9 illustrate the

probabilities of a retry due to a race when reading the

hash table entry or when reading the key-value extent.

The figure shows a non-negligible race probability only

when the hash table is extremely small. When the hash

table contains more than 20,000 keys, the probability of

racing is less than 0.01% even under peak put and get

loads.
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Figure 9: Percentage of re-reads of extents and hash table en-

tries due to detected read-write races. We control the likeli-

hood of races by varying the number of unique keys being read

or updated. The Pilaf server is operating under peak through-

put.

5.4 Pilaf versus Memcached and Redis

We compare Pilaf to two existing popular key-value sys-

tems, Memcached [7] and Redis [25]. Both systems are

widely deployed in the industry, including Facebook [1],

YouTube [5], and Instagram [15]. Memcached is com-

monly used as a database query cache or a web cache

to speed up the server’s generation of a result web page

and improve throughput. Low operation latency is vital

in such a usage scenario: the faster the key-value cache

can fulfill each request, the faster a page involving many

dependent cache lookups can be returned to the client.

High throughput and low CPU overhead are also crucial,

since these properties allow more clients can be served

with fewer server resources.

Because Memcached and Redis are written to use

TCP sockets, we run them on our Infiniband network

using IPoIB. It’s important to note that we do not batch

requests for any of the systems, unlike in [20].

Throughput Comparison: In our experiments, the

peak throughput of each system is achieved when run-

ning 40 concurrent client processes. Figure 10 shows

the achieved operation throughput using a single CPU

core for various value sizes in a mixed workload with

90% gets. We can see that the performance of Pilaf

far exceeds that of Redis and Memcached running on

top of IPoIB. For small operations (64-byte values) Pilaf

achieves 1.3 million ops/sec compared to less than 60

Kops/sec for Memcached and Redis. Both Memcached

and Redis are bottlenecked by the single CPU core and

are unable to saturate the Infiniband card’s performance.

Because of the CPU bottleneck, their single core perfor-

mance is the same when running on 1 Gbps Ethernet.

We elided those numbers from Figure 10 for clarity.

The throughputs of Memcached and Redis can be

scaled by devoting more CPU cores to each system. For

example, both systems can saturate the 1Gbps Ethernet

card when running on four CPU cores. We were not able

to scale Memcached and Redis’ performance on IPoIB

using more CPU cores because the IPoIB driver is un-

able to spread network interrupts across multiple cores.

Nevertheless, even if we optimistically assume perfect

scaling, Memcached and Redis would require 17× CPU

cores to match the performance of Pilaf running on a sin-

gle core for small key-values. In reality, these systems

do not exhibit perfect scaling. For example, [20] re-

ported a 11× throughput improvements for non-batched

Memcached puts when scaling from 1 to 16 cores.

When comparing against Pilaf-VO, we see that Pilaf

also achieves substantially better throughput across all

operation sizes. In particular, the throughput of Pilaf is

2.1× that of Pilaf-VO for 64-byte values and 1.1× for

4096-byte values. The shrinking performance gap be-

tween Pilaf and Pilaf-VO for larger values reflects the in-

creasingly dominant network transmission overhead for

large messages.

Figure 10(b) shows the peak throughput of different

systems in a second workload with 50% gets and 50%

puts. Not surprisingly, the performance of Memcached

and Redis are similar under both workloads.
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(a) Peak throughput (90% gets, 10% puts)
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Figure 10: Throughput achieved on a single CPU core for Pilaf, Pilaf-VO, Redis, and Memcached.

We were surprised to see that Pilaf achieves identical

and sometimes better throughput in the second workload

compared to the first. Since RDMA-based get opera-

tion has much higher performance than verb message-

based put (Figure 7), we initially expected the sec-

ond workload to achieve worse throughput since it con-

tains a larger fraction of puts. On further investigation,

we found that our Infiniband cards appear to be able

to process verb messages and RDMA operations some-

what independently. Quantitatively, the card can reach
∼80% of its peak RDMA throughput while simultane-

ously sending and receiving verb messages at ∼95% of

the peak verb throughput. This explains why the sec-

ond workload has better throughput. For example, with

256-byte values, the first workload achieves 0.9 mil-

lion gets/sec (80% of peak RDMA performance) and

0.1 million puts/sec (far less than the card’s verb mes-

sage sending capacity). By contrast, the second work-

load produces 0.65 million ops/sec for both get and

put which represents 60% of the card’s peak RDMA

performance and 94% of the card’s verb message perfor-

mance. Thus, the second workload has a total through-

put of 1.3 million ops/sec, better than that achieved by

the first workload.

Latency: Figure 11 shows the cumulative probability

distribution of operation latencies under different sys-

tems in the workload with 90% gets. The underlying

experiments involved 10 concurrent clients issuing op-

erations with 1024-byte values as fast as possible.

In Figure 11, Pilaf’s median latency is 15µs which

is determined by the get operation latency. From the

earlier experiments in Section 2 (Figure 1), we know

the average RDMA roundtrip latency is 4µs for 1024-

byte reads with a single client. With an average of 1.45

probes (each involving two RDMA reads) to find a par-

ticular key-value in a 65%-filled 3-way Cuckoo hash ta-

ble, the ideal get latency would be 11.2 µs. The ex-

tra 4µs reflects the overhead in calculating CRCs on the

clients’ side plus the queuing effects incurred by having

ten connected clients. The latency tail in Figure 11 is

very short.

As expected, IPoIB also maintains lower latency than

Ethernet for both Memcached and Redis. Median Eth-

ernet latency is 209µs for Redis and 230µs for Mem-

cached. Pilaf beats Redis’ and Memcached’s median

Ethernet latency by 14×-15×, and their median IPoIB

latency by 9×-11×. The experiments for Figure 11 in-

volve ten clients connected to a single server. In these

experiments, Pilaf-VO reaches 95% of its peak through-

put, Memcached is at 75% of its maximum through-

put, and Redis and Pilaf at half their peak throughput.

Therefore, queuing effects are uneven for these systems

in Figure 11. When tested under light loads (e.g. us-

ing a single client), Pilaf-VO and Pilaf have similar la-

tency while Memcached and Redis running on IPoIB

also have similar latency.

6 Related Work

There has been much work in the HPC community

to exploit performance critical features like kernel

and CPU bypassing. Many MPI implementations, e.g.

MPICH/MVAPICH [18, 19] and OpenMPI [27], sup-

ports an Infiniband network layer, leveraging both verb

messages and RDMA to reduce latency and increase

bandwidth.

RDMA as a powerful HPC networking feature has

been recognized in the system community in several

works. Due to the perceived cost of specialized HPC

hardware, some have advocated software RDMA over

traditional Ethernet. Soft-iWARP is a version of the

iWARP protocol implemented entirely in software [29];

it reduces TCP latency by 5%-15% by minimizing data

copying and limiting the number of context switches re-
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ments involved 10 clients.

quired. Another project later used soft-iWARP to realize

a 20% reduction in per-get CPU load for Memcached

without Infiniband hardware [28].

Many have leveraged RDMAs to improve the

throughput and reduce the CPU overhead of existing

networked systems such as PVFS [31], NFS [9], Mem-

cached [14, 13, 28], and HBase [12]. All of these works

re-use existing system designs on top of a modified com-

munication layer which utilizes RDMA within a tradi-

tional request/reply message exchange. In other words,

RDMAs are used as a supplemental mechanism to op-

timize data transfer; each RDMA access is always pre-

ceded by verb or other messaging mechanisms that sig-

nal control information for that RDMA. As an example,

a client sends a verb message to instruct the server to

perform an RDMA read (or write) to the client. When

the server completes the RDMA operation, it replies

with another verb message informing the client that the

transfer is complete. This strategy uses RDMA effec-

tively only for large messages since the throughput and

CPU overhead of processing small messages are still

bounded by the verb message performance. By con-

trast, our work aims to replace a large fraction of the

request/reply message exchanges with RDMA reads by

the clients, thereby significantly reducing the server’s

CPU overhead.

The three projects that implement Memcached over

RDMA on Infiniband [14, 13] or soft-iWARP [28] also

adopt the usual combination of control messages plus

RDMAs to process gets and puts at the server. In

[14], the client uses a verb message to send the server

a local buffer address, which the server then copies data

into using an RDMA write. Put operations also involve

two verb messages and one RDMA read, wherein the

client gives the server an address, from which the server

pulls a key-value pair from the client via an RDMA

read. Both put and get include short-operation opti-

mizations that combine the data normally read or written

via RDMA into one of the verb messages exchanged.

Compared to Pilaf, this design achieves much lower

throughput. Their reported throughput in an Infiniband

cluster similar to ours is 300 Kops/sec for small oper-

ations, significantly lower than that achieved by Pilaf

(1.3 million ops/sec). The other Memcached over Infini-

band project [13] combines Infiniband’s Reliable Con-

nection (RC, with guarantees similar to TCP) and Un-

reliable Datagram (UD, resembling UDP) modes. The

resulting performance is also lower than achieved by Pi-

laf, despite running on a QDR Infiniband cluster which

is twice as fast as ours (DDR).

7 Conclusion

As future datacenter networks move towards incorpo-

rating HPC network features, it is time to rethink net-

worked system designs that can fully exploit power-

ful features like RDMA. We have demonstrated such a

design by building a high-performance key-value store

with very low CPU overhead. Pilaf replaces the usual re-

quest/rely messaging pattern for read-only operations by

having the clients directly read from the server’s mem-

ory using RDMA. It uses self-verifying data structures to

detect read-write races in the face of concurrent RDMA

reads from the clients and local memory writes from the

server. Pilaf is able to achieve a peak throughput of over

1.3M ops/sec with a single CPU core, outperforming ex-

isting systems running over Ethernet or IPoIB by more

than an order of magnitude.
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