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Abstract

WheelFS is a wide-area distributed storage system in-

tended to help multi-site applications share data and gain

fault tolerance. WheelFS takes the form of a distributed

file system with a familiar POSIX interface. Its design al-

lows applications to adjust the tradeoff between prompt

visibility of updates from other sites and the ability for

sites to operate independently despite failures and long

delays. WheelFS allows these adjustments via semantic

cues, which provide application control over consistency,

failure handling, and file and replica placement.

WheelFS is implemented as a user-level file system and

is deployed on PlanetLab and Emulab. Three applications

(a distributed Web cache, an email service and large file

distribution) demonstrate that WheelFS’s file system in-

terface simplifies construction of distributed applications

by allowing reuse of existing software. These applica-

tions would perform poorly with the strict semantics im-

plied by a traditional file system interface, but by pro-

viding cues to WheelFS they are able to achieve good

performance. Measurements show that applications built

on WheelFS deliver comparable performance to services

such as CoralCDN and BitTorrent that use specialized

wide-area storage systems.

1 Introduction

There is a growing set of Internet-based services that are

too big, or too important, to run at a single site. Examples

include Web services for e-mail, video and image hosting,

and social networking. Splitting such services over mul-

tiple sites can increase capacity, improve fault tolerance,

and reduce network delays to clients. These services often

need storage infrastructure to share data among the sites.

This paper explores the use of a new file system specif-

ically designed to be the storage infrastructure for wide-

area distributed services.

A wide-area storage system faces a tension between

sharing and site independence. The system must support

sharing, so that data stored by one site may be retrieved

by others. On the other hand, sharing can be dangerous if

it leads to the unreachability of one site causing blocking

at other sites, since a primary goal of multi-site opera-

tion is fault tolerance. The storage system’s consistency

model affects the sharing/independence tradeoff: stronger

forms of consistency usually involve servers or quorums

of servers that serialize all storage operations, whose un-

reliability may force delays at other sites [23]. The storage

system’s data and meta-data placement decisions also af-

fect site independence, since data placed at a distant site

may be slow to fetch or unavailable.

The wide-area file system introduced in this paper,

WheelFS, allows application control over the sharing/in-

dependence tradeoff, including consistency, failure han-

dling, and replica placement. Each application can choose

a tradeoff between performance and consistency, in the

style of PRACTI [8] and PADS [9], but in the context of a

file system with a POSIX interface.

Central decisions in the design of WheelFS includ-

ing defining the default behavior, choosing which behav-

iors applications can control, and finding a simple way

for applications to specify those behaviors. By default,

WheelFS provides standard file system semantics (close-

to-open consistency) and is implemented similarly to pre-

vious wide-area file systems (e.g., every file or directory

has a primary storage node). Applications can adjust the

default semantics and policies with semantic cues. The set

of cues is small (around 10) and directly addresses the

main challenges of wide-area networks (orders of magni-

tude differences in latency, lower bandwidth between sites

than within a site, and transient failures). WheelFS allows

the cues to be expressed in the pathname, avoiding any

change to the standard POSIX interface. The benefits of

WheelFS providing a file system interface are compatibil-

ity with existing software and programmer ease-of-use.

A prototype of WheelFS runs on FreeBSD, Linux, and

MacOS. The client exports a file system to local applica-

tions using FUSE [21]. WheelFS runs on PlanetLab and

an emulated wide-area Emulab network.

Several distributed applications run on WheelFS and

demonstrate its usefulness, including a distributed Web

cache and a multi-site email service. The applications use

different cues, showing that the control that cues pro-

vide is valuable. All were easy to build by reusing ex-

isting software components, with WheelFS for storage

instead of a local file system. For example, the Apache

caching web proxy can be turned into a distributed, co-

operative Web cache by modifying one pathname in a



configuration file, specifying that Apache should store

cached data in WheelFS with cues to relax consistency.

Although the other applications require more changes, the

ease of adapting Apache illustrates the value of a file sys-

tem interface; the extent to which we could reuse non-

distributed software in distributed applications came as a

surprise [38].

Measurements show that WheelFS offers more scal-

able performance on PlanetLab than an implementation of

NFSv4, and that for applications that use cues to indicate

they can tolerate relaxed consistency, WheelFS continues

to provide high performance in the face of network and

server failures. For example, by using the cues .Eventu-

alConsistency, .MaxTime, and .Hotspot, the distributed

Web cache quickly reduces the load on the origin Web

server, and the system hardly pauses serving pages when

WheelFS nodes fail; experiments on PlanetLab show that

the WheelFS-based distributed Web cache reduces origin

Web server load to zero. Further experiments on Emu-

lab show that WheelFS can offer better file downloads

times than BitTorrent [14] by using network coordinates

to download from the caches of nearby clients.

The main contributions of this paper are a new file

system that assists in the construction of wide-area dis-

tributed applications, a set of cues that allows applications

to control the file system’s consistency and availability

tradeoffs, and a demonstration that wide-area applications

can achieve good performance and failure behavior by us-

ing WheelFS.

The rest of the paper is organized as follows. Sections 2

and 3 outline the goals of WheelFS and its overall de-

sign. Section 4 describes WheelFS’s cues, and Section 5

presents WheelFS’s detailed design. Section 6 illustrates

some example applications, Section 7 describes the imple-

mentation of WheelFS, and Section 8 measures the per-

formance of WheelFS and the applications. Section 9 dis-

cusses related work, and Section 10 concludes.

2 Goals

A wide-area storage system must have a few key prop-

erties in order to be practical. It must be a useful building

block for larger applications, presenting an easy-to-use in-

terface and shouldering a large fraction of the overall stor-

age management burden. It must allow inter-site access to

data when needed, as long as the health of the wide-area

network allows. When the site storing some data is not

reachable, the storage system must indicate a failure (or

find another copy) with relatively low delay, so that a fail-

ure at one site does not prevent progress at other sites. Fi-

nally, applications may need to control the site(s) at which

data are stored in order to achieve fault-tolerance and per-

formance goals.

As an example, consider a distributed Web cache whose

primary goal is to reduce the load on the origin servers of

popular pages. Each participating site runs a Web proxy

and a part of a distributed storage system. When a Web

proxy receives a request from a browser, it first checks

to see if the storage system has a copy of the requested

page. If it does, the proxy reads the page from the stor-

age system (perhaps from another site) and serves it to the

browser. If not, the proxy fetches the page from the origin

Web server, inserts a copy of it into the storage system (so

other proxies can find it), and sends it to the browser.

The Web cache requires some specific properties from

the distributed storage system in addition to the general

ability to store and retrieve data. A proxy must serve data

with low delay, and can consult the origin Web server if

it cannot find a cached copy; thus it is preferable for the

storage system to indicate “not found” quickly if finding

the data would take a long time (due to timeouts). The

storage need not be durable or highly fault tolerant, again

because proxies can fall back on the origin Web server.

The storage system need not be consistent in the sense of

guaranteeing to find the latest stored version of document,

since HTTP headers allow a proxy to evaluate whether a

cached copy is still valid.

Other distributed applications might need different

properties in a storage system: they might need to see the

latest copy of some data, and be willing to pay a price in

high delay, or they may want data to be stored durably,

or have specific preferences for which site stores a doc-

ument. Thus, in order to be a usable component in many

different systems, a distributed storage system needs to

expose a level of control to the surrounding application.

3 WheelFS Overview

This section gives a brief overview of WheelFS to help the

reader follow the design proposed in subsequent sections.

3.1 System Model

WheelFS is intended to be used by distributed applica-

tions that run on a collection of sites distributed over the

wide-area Internet. All nodes in a WheelFS deployment

are either managed by a single administrative entity or

multiple cooperating administrative entities. WheelFS’s

security goals are limited to controlling the set of partici-

pating servers and imposing UNIX-like access controls on

clients; it does not guard against Byzantine failures in par-

ticipating servers [6, 26]. We expect servers to be live and

reachable most of the time, with occasional failures. Many

existing distributed infrastructures fit these assumptions,

such as wide-area testbeds (e.g., PlanetLab and RON),

collections of data centers spread across the globe (e.g.,

Amazon’s EC2), and federated resources such as Grids.

3.2 System Overview

WheelFS provides a location-independent hierarchy of di-

rectories and files with a POSIX file system interface. At



any given time, every file or directory object has a single

“primary” WheelFS storage server that is responsible for

maintaining the latest contents of that object. WheelFS

clients, acting on behalf of applications, use the storage

servers to retrieve and store data. By default, clients con-

sult the primary whenever they modify an object or need

to find the latest version of an object. Accessing a single

file could result in communication with several servers,

since each subdirectory in the path could be served by a

different primary. WheelFS replicates an object’s data us-

ing primary/backup replication, and a background mainte-

nance process running on each server ensures that data are

replicated correctly. Each update to an object increments

a version number kept in a separate meta-data structure,

co-located with the data.

When a WheelFS client needs to use an object, it must

first determine which server is currently the primary for

that object. All nodes agree on the assignment of objects

to primaries to help implement the default strong consis-

tency. Nodes learn the assignment from a configuration

service—a replicated state machine running at multiple

sites. This service maintains a table that maps each object

to one primary and zero or more backup servers. WheelFS

nodes cache a copy of this table. Section 5 presents the de-

sign of the configuration service.

A WheelFS client reads a file’s data in blocks from

the file’s primary server. The client caches the file’s data

once read, obtaining a lease on its meta-data (including

the version number) from the primary. Clients have the

option of reading from other clients’ caches, which can

be helpful for large and popular files that are rarely up-

dated. WheelFS provides close-to-open consistency by

default for files, so that if an application works correctly

on a POSIX file system, it will also work correctly on

WheelFS.

4 Semantic cues

WheelFS provides semantic cues within the standard

POSIX file system API. We believe cues would also be

useful in the context of other wide-area storage layers with

alternate designs, such as Shark [6] or a wide-area version

of BigTable [13]. This section describes how applications

specify cues and what effect they have on file system op-

erations.

4.1 Specifying cues

Applications specify cues to WheelFS in pathnames; for

example, /wfs/.Cue/data refers to /wfs/data with the cue

.Cue. The main advantage of embedding cues in path-

names is that it keeps the POSIX interface unchanged.

This choice allows developers to program using an inter-

face with which they are familiar and to reuse software

easily.

One disadvantage of cues is that they may break soft-

ware that parses pathnames and assumes that a cue is a

directory. Another is that links to pathnames that contain

cues may trigger unintuitive behavior. We have not en-

countered examples of these problems.

WheelFS clients process the cue path components lo-

cally. A pathname might contain several cues, separated

by slashes. WheelFS uses the following rules to combine

cues: (1) a cue applies to all files and directories in the

pathname appearing after the cue; and (2) cues that are

specified later in a pathname may override cues in the

same category appearing earlier.

As a preview, a distributed Web cache could be

built by running a caching Web proxy at each of a

number of sites, sharing cached pages via WheelFS.

The proxies could store pages in pathnames such as

/wfs/.MaxTime=200/url, causing open() to fail after

200 ms rather than waiting for an unreachable WheelFS

server, indicating to the proxy that it should fetch from

the original Web server. See Section 6 for a more sophis-

ticated version of this application.

4.2 Categories

Table 1 lists WheelFS’s cues and the categories into which

they are grouped. There are four categories: placement,

durability, consistency, and large reads. These categories

reflect the goals discussed in Section 2. The placement

cues allow an application to reduce latency by placing

data near where it will be needed. The durability and con-

sistency cues help applications avoid data unavailability

and timeout delays caused by transient failures. The large

read cues increase throughput when reading large and/or

popular files. Table 2 shows which POSIX file system API

calls are affected by which of these cues.

Each cue is either persistent or transient. A persistent

cue is permanently associated with the object, and may

affect all uses of the object, including references that do

not specify the cue. An application associates a persistent

cue with an object by specifying the cue when first creat-

ing the object. Persistent cues are immutable after object

creation. If an application specifies a transient cue in a file

system operation, the cue only applies to that operation.

Because these cues correspond to the challenges faced

by wide-area applications, we consider this set of cues to

be relatively complete. These cues work well for the ap-

plications we have considered.

4.3 Placement

Applications can reduce latency by storing data near the

clients who are likely to use that data. For example, a

wide-area email system may wish to store all of a user’s

message files at a site near that user.

The .Site=X cue indicates the desired site for a newly-

created file’s primary. The site name can be a simple

string, e.g. .Site=westcoast, or a domain name such as



Cue Category Cue Name Type Meaning (and Tradeoffs)

Placement .Site=X P Store files and directories on a server at the site named X.

.KeepTogether P Store all files in a directory subtree on the same set of servers.

.RepSites=NRS P Store replicas across NRS different sites.

Durability .RepLevel=NRL P Keep NRL replicas for a data object.

.SyncLevel=NSL T Wait for only NSL replicas to accept a new file or directory version, reduc-

ing both durability and delay.

Consistency .EventualConsistency T∗ Use potentially stale cached data, or data from a backup, if the primary

does not respond quickly.

.MaxTime=T T Limit any WheelFS remote communication done on behalf of a file system

operation to no more than T ms.

Large reads .WholeFile T Enable pre-fetching of an entire file upon the first read request.

.Hotspot T Fetch file data from other clients’ caches to reduce server load. Fetches

multiple blocks in parallel if used with .WholeFile.

Table 1: Semantic cues. A cue can be either Persistent or Transient (∗Section 4.5 discusses a caveat for .EventualConsistency).
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.S X X

.KT X X

.RS X X X X X X X X

.RL X X X X X X X X

.SL X X X X X X X X

.EC X X X X X X X X X X X

.MT X X X X X X X X X X X

.WF X X

.H X

Table 2: The POSIX file system API calls affected by each cue.

.Site=rice.edu. An administrator configures the corre-

spondence between site names and servers. If the path

contains no .Site cue, WheelFS uses the local node’s site

as the file’s primary. Use of random as the site name will

spread newly created files over all sites. If the site indi-

cated by .Site is unreachable, or cannot store the file due

to storage limitations, WheelFS stores the newly created

file at another site, chosen at random. The WheelFS back-

ground maintenance process will eventually transfer the

misplaced file to the desired site.

The .KeepTogether cue indicates that an entire sub-

tree should reside on as few WheelFS nodes as possible.

Clustering a set of files can reduce the delay for operations

that access multiple files. For example, an email system

can store a user’s message files on a few nodes to reduce

the time required to list all messages.

The .RepSites=NRS cue indicates how many different

sites should have copies of the data. NRS only has an

effect when it is less than the replication level (see Sec-

tion 4.4), in which case it causes one or more sites to

store the data on more than one local server. When pos-

sible, WheelFS ensures that the primary’s site is one of

the sites chosen to have an extra copy. For example, spec-

ifying .RepSites=2 with a replication level of three causes

the primary and one backup to be at one site, and another

backup to be at a different site. By using .Site and .Rep-

Sites, an application can ensure that a permanently failed

primary can be reconstructed at the desired site with only

local communication.

4.4 Durability

WheelFS allows applications to express durability

preferences with two cues: .RepLevel=NRL and

.SyncLevel=NSL.

The .RepLevel=NRL cue causes the primary to store

the object on NRL−1 backups; by default, NRL= 3. The

WheelFS prototype imposes a maximum of four replicas

(see Section 5.2 for the reason for this limit; in a future

prototype it will most likely be higher).

The .SyncLevel=NSL cue causes the primary to wait

for acknowledgments of writes from only NSL of the ob-

ject’s replicas before acknowledging the client’s request,

reducing durability but also reducing delays if some back-

ups are slow or unreachable. By default, NSL = NRL.

4.5 Consistency

The .EventualConsistency cue allows a client to use an

object despite unreachability of the object’s primary node,

and in some cases the backups as well. For reads and

pathname lookups, the cue allows a client to read from a

backup if the primary is unavailable, and from the client’s

local cache if the primary and backups are both unavail-

able. For writes and filename creation, the cue allows a

client to write to a backup if the primary is not available.

A consequence of .EventualConsistency is that clients

may not see each other’s updates if they cannot all reli-

ably contact the primary. Many applications such as Web

caches and email systems can tolerate eventual consis-



tency without significantly compromising their users’ ex-

perience, and in return can decrease delays and reduce ser-

vice unavailability when a primary or its network link are

unreliable.

The cue provides eventual consistency in the sense that,

in the absence of updates, all replicas of an object will

eventually converge to be identical. However, WheelFS

does not provide eventual consistency in the rigorous form

(e.g., [18]) used by systems like Bayou [39], where all

updates, across all objects in the system, are committed

in a total order at all replicas. In particular, updates in

WheelFS are only eventually consistent with respect to

the object they affect, and updates may potentially be lost.

For example, if an entry is deleted from a directory under

the .EventualConsistency cue, it could reappear in the

directory later.

When reading files or using directory contents with

eventual consistency, a client may have a choice between

the contents of its cache, replies from queries to one or

more backup servers, and a reply from the primary. A

client uses the data with the highest version number that

it finds within a time limit. The default time limit is one

second, but can be changed with the .MaxTime=T cue (in

units of milliseconds). If .MaxTime is used without even-

tual consistency, the WheelFS client yields an error if it

cannot contact the primary after the indicated time.

The background maintenance process periodically rec-

onciles a primary and its backups so that they eventually

contain the same data for each file and directory. The pro-

cess may need to resolve conflicting versions of objects.

For a file, the process chooses arbitrarily among the repli-

cas that have the highest version number; this may cause

writes to be lost. For an eventually-consistent directory, it

puts the union of files present in the directory’s replicas

into the reconciled version. If a single filename maps to

multiple IDs, the process chooses the one with the small-

est ID and renames the other files. Enabling directory

merging is the only sense in which the .EventualConsis-

tency cue is persistent: if specified at directory creation

time, it guides the conflict resolution process. Otherwise

its effect is specific to particular references.

4.6 Large reads

WheelFS provides two cues that enable large-file read op-

timizations: .WholeFile and .Hotspot. The .WholeFile

cue instructs WheelFS to pre-fetch the entire file into

the client cache. The .Hotspot cue instructs the WheelFS

client to read the file from other clients’ caches, consult-

ing the file’s primary for a list of clients that likely have

the data cached. If the application specifies both cues, the

client will read data in parallel from other clients’ caches.

Unlike the cues described earlier, .WholeFile and

.Hotspot are not strictly necessary: a file system could

potentially learn to adopt the right cue by observing appli-
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Figure 1: Placement and interaction of WheelFS components.

cation access patterns. We leave such adaptive behavior to

future work.

5 WheelFS Design

WheelFS requires a design flexible enough to follow the

various cues applications can supply. This section presents

that design, answering the following questions:

• How does WheelFS assign storage responsibility

for data objects among participating servers? (Sec-

tion 5.2)

• How does WheelFS ensure an application’s desired

level of durability for its data? (Section 5.3)

• How does WheelFS provide close-to-open consis-

tency in the face of concurrent file access and fail-

ures, and how does it relax consistency to improve

availability? (Section 5.4)

• How does WheelFS permit peer-to-peer communica-

tion to take advantage of nearby cached data? (Sec-

tion 5.5)

• How does WheelFS authenticate users and perform

access control? (Section 5.6)

5.1 Components

A WheelFS deployment (see Figure 1) consists of clients

and servers; a single host often plays both roles. The

WheelFS client software uses FUSE [21] to present the

distributed file system to local applications, typically in

/wfs. All clients in a given deployment present the same

file system tree in /wfs. A WheelFS client communicates

with WheelFS servers in order to look up file names, cre-

ate files, get directory listings, and read and write files.

Each client keeps a local cache of file and directory con-

tents.

The configuration service runs independently on a

small set of wide-area nodes. Clients and servers com-

municate with the service to learn the set of servers and



which files and directories are assigned to which servers,

as explained in the next section.

5.2 Data storage assignment

WheelFS servers store file and directory objects. Each ob-

ject is internally named using a unique numeric ID. A

file object contains opaque file data and a directory object

contains a list of name-to-object-ID mappings for the di-

rectory contents. WheelFS partitions the object ID space

into 2S slices using the first S bits of the object ID.

The configuration service maintains a slice table that

lists, for each slice currently in use, a replication policy

governing the slice’s data placement, and a replica list of

servers currently responsible for storing the objects in that

slice. A replication policy for a slice indicates from which

site it must choose the slice’s primary (.Site), and from

how many distinct sites (.RepSites) it must choose how

many backups (.RepLevel). The replica list contains the

current primary for a slice, and NRL−1 backups.

Because each unique replication policy requires a

unique slice identifier, the choice of S limits the maxi-

mum allowable number of replicas in a policy. In our cur-

rent implementation S is fairly small (12 bits), and so to

conserve slice identifiers it limits the maximum number

of replicas to four.

5.2.1 Configuration service

The configuration service is a replicated state machine,

and uses Paxos [25] to elect a new master whenever its

membership changes. Only the master can update the

slice table; it forwards updates to the other members. A

WheelFS node is initially configured to know of at least

one configuration service member, and contacts it to learn

the full list of members and which is the master.

The configuration service exports a lock interface to

WheelFS servers, inspired by Chubby [11]. Through this

interface, servers can acquire, renew, and release

locks on particular slices, or fetch a copy of the cur-

rent slice table. A slice’s lock grants the exclusive right

to be a primary for that slice, and the right to specify the

slice’s backups and (for a new slice) its replication pol-

icy. A lock automatically expires after L seconds unless

renewed. The configuration service makes no decisions

about slice policy or replicas. Section 5.3 explains how

WheelFS servers use the configuration service to recover

after the failure of a slice’s primary or backups.

Clients and servers periodically fetch and cache the

slice table from the configuration service master. A client

uses the slice table to identify which servers should be

contacted for an object in a given slice. If a client encoun-

ters an object ID for which its cached slice table does not

list a corresponding slice, the client fetches a new table.

A server uses the the slice table to find other servers that

store the same slice so that it can synchronize with them.

Servers try to always have at least one slice locked,

to guarantee they appear in the table of currently locked

slices; if the maintenance process notices that the server

holds no locks, it will acquire the lock for a new slice. This

allows any connected node to determine the current mem-

bership of the system by taking the union of the replica

lists of all slices.

5.2.2 Placing a new file or directory

When a client creates a new file or directory, it uses the

placement and durability cues specified by the application

to construct an appropriate replication policy. If .KeepTo-

gether is present, it sets the primary site of the policy to

be the primary site of the object’s parent directory’s slice.

Next the client checks the slice table to see if an existing

slice matches the policy; if so, the client contacts the pri-

mary replica for that slice. If not, it forwards the request

to a random server at the site specified by the .Site cue.

When a server receives a request asking it to create a

new file or directory, it constructs a replication policy as

above, and sets its own site to be the primary site for the

policy. If it does not yet have a lock on a slice matching

the policy, it generates a new, randomly-generated slice

identifier and constructs a replica list for that slice, choos-

ing from the servers listed in the slice table. The server

then acquires a lock on this new slice from the config-

uration service, sending along the replication policy and

the replica list. Once it has a lock on an appropriate slice,

it generates an object ID for the new object, setting the

first S bits to be the slice ID and all other bits to random

values. The server returns the new ID to the client, and

the client then instructs the object’s parent directory’s pri-

mary to add a new entry for the object. Other clients that

learn about this new object ID from its entry in the par-

ent directory can use the first S bits of the ID to find the

primary for the slice and access the object.

5.2.3 Write-local policy

The default data placement policy in WheelFS is to write

locally, i.e., use a local server as the primary of a newly

created file (and thus also store one copy of the contents

locally). This policy works best if each client also runs a

WheelFS server. The policy allows writes of large non-

replicated files at the speed of the local disk, and allows

such files to be written at one site and read at another with

just one trip across the wide-area network.

Modifying an existing file is not always fast, because

the file’s primary might be far away. Applications desiring

fast writes should store output in unique new files, so that

the local server will be able to create a new object ID in

a slice for which it is the primary. Existing software often

works this way; for example, the Apache caching proxy

stores a cached Web page in a unique file named after the

page’s URL.



An ideal default placement policy would make deci-

sions based on server loads across the entire system; for

example, if the local server is nearing its storage capac-

ity but a neighbor server at the same site is underloaded,

WheelFS might prefer writing the file to the neighbor

rather than the local disk (e.g., as in Porcupine [31]). De-

veloping such a strategy is future work; for now, applica-

tions can use cues to control where data are stored.

5.3 Primary/backup replication

WheelFS uses primary/backup replication to manage

replicated objects. The slice assignment designates, for

each ID slice, a primary and a number of backup servers.

When a client needs to read or modify an object, by de-

fault it communicates with the primary. For a file, a mod-

ification is logically an entire new version of the file con-

tents; for a directory, a modification affects just one en-

try. The primary forwards each update to the backups,

after which it writes the update to its disk and waits for

the write to complete. The primary then waits for replies

from NSL−1 backups, indicating that those backups have

also written the update to their disks. Finally, the primary

replies to the client. For each object, the primary executes

operations one at a time.

After being granted the lock on a slice initially, the

WheelFS server must renew it periodically; if the lock ex-

pires, another server may acquire it to become the primary

for the slice. Since the configuration service only grants

the lock on a slice to one server at a time, WheelFS en-

sures that only one server will act as a primary for a slice

at any given time. The slice lock time L is a compromise:

short lock times lead to fast reconfiguration, while long

lock times allow servers to operate despite the temporary

unreachability of the configuration service.

In order to detect failure of a primary or backup, a

server pings all other replicas of its slices every five min-

utes. If a primary decides that one of its backups is un-

reachable, it chooses a new replica from the same site

as the old replica if possible, otherwise from a random

site. The primary will transfer the slice’s data to this new

replica (blocking new updates), and then renew its lock on

that slice along with a request to add the new replica to the

replica list in place of the old one.

If a backup decides the primary is unreachable, it will

attempt to acquire the lock on the slice from the configura-

tion service; one of the backups will get the lock once the

original primary’s lock expires. The new primary checks

with the backups to make sure that it didn’t miss any ob-

ject updates (e.g., because NSL<NRL during a recent up-

date, and thus not all backups are guaranteed to have com-

mitted that update).

A primary’s maintenance process periodically checks

that the replicas associated with each slice match the

slice’s policy; if not, it will attempt to recruit new repli-

cas at the appropriate sites. If the current primary wishes

to recruit a new primary at the slice’s correct primary site

(e.g., a server that had originally been the slice’s primary

but crashed and rejoined), it will release its lock on the

slice, and directly contact the chosen server, instructing it

to acquire the lock for the slice.

5.4 Consistency

By default, WheelFS provides close-to-open consistency:

if one application instance writes a file and waits for

close() to return, and then a second application in-

stance open()s and reads the file, the second applica-

tion will see the effects of the first application’s writes.

The reason WheelFS provides close-to-open consistency

by default is that many applications expect it.

The WheelFS client has a write-through cache for file

blocks, for positive and negative directory entries (en-

abling faster pathname lookups), and for directory and file

meta-data. A client must acquire an object lease from an

object’s primary before it uses cached meta-data. Before

the primary executes any update to an object, it must in-

validate all leases or wait for them to expire. This step

may be time-consuming if many clients hold leases on an

object.

Clients buffer file writes locally to improve perfor-

mance. When an application calls close(), the client

sends all outstanding writes to the primary, and waits

for the primary to acknowledge them before allowing

close() to return. Servers maintain a version num-

ber for each file object, which they increment after each

close() and after each change to the object’s meta-data.

When an application open()s a file and then reads it,

the WheelFS client must decide whether the cached copy

of the file (if any) is still valid. The client uses cached

file data if the object version number of the cached data

is the same as the object’s current version number. If the

client has an unexpired object lease for the object’s meta-

data, it can use its cached meta-data for the object to find

the current version number. Otherwise it must contact the

primary to ask for a new lease, and for current meta-data.

If the version number of the cached data is not current, the

client fetches new file data from the primary.

By default, WheelFS provides similar consistency for

directory operations: after the return of an application sys-

tem call that modifies a directory (links or unlinks a file

or subdirectory), applications on other clients are guaran-

teed to see the modification. WheelFS clients implement

this consistency by sending directory updates to the direc-

tory object’s primary, and by ensuring via lease or explicit

check with the primary that cached directory contents are

up to date. Cross-directory rename operations in WheelFS

are not atomic with respect to failures. If a crash occurs at

the wrong moment, the result may be a link to the moved

file in both the source and destination directories.



The downside to close-to-open consistency is that if a

primary is not reachable, all operations that consult the

primary will delay until it revives or a new primary takes

over. The .EventualConsistency cue allows WheelFS to

avoid these delays by using potentially stale data from

backups or local caches when the primary does not re-

spond, and by sending updates to backups. This can result

in inconsistent replicas, which the maintenance process

resolves in the manner described in Section 4.5, leading

eventually to identical images at all replicas. Without the

.EventualConsistency cue, a server will reject operations

on objects for which it is not the primary.

Applications can specify timeouts on a per-object ba-

sis using the .MaxTime=T cue. This adds a timeout of

T ms to every operation performed at a server. Without

.EventualConsistency, a client will return a failure to

the application if the primary does not respond within T

ms; with .EventualConsistency, clients contact backup

servers once the timeout occurs. In future work we hope to

explore how to best divide this timeout when a single file

system operation might involve contacting several servers

(e.g., a create requires talking to the parent directory’s pri-

mary and the new object’s primary, which could differ).

5.5 Large reads

If the application specifies .WholeFile when reading a

file, the client will pre-fetch the entire file into its cache.

If the application uses .WholeFile when reading directory

contents, WheelFS will pre-fetch the meta-data for all of

the directory’s entries, so that subsequent lookups can be

serviced from the cache.

To implement the .Hotspot cue, a file’s primary main-

tains a soft-state list of clients that have recently cached

blocks of the file, including which blocks they have

cached. A client that reads a file with .Hotspot asks the

server for entries from the list that are near the client; the

server chooses the entries using Vivaldi coordinates [15].

The client uses the list to fetch each block from a nearby

cached copy, and informs the primary of successfully

fetched blocks.

If the application reads a file with both .WholeFile and

.Hotspot, the client will issue block fetches in parallel to

multiple other clients. It pre-fetches blocks in a random

order so that clients can use each others’ caches even if

they start reading at the same time [6].

5.6 Security

WheelFS enforces three main security properties. First,

a given WheelFS deployment ensures that only autho-

rized hosts participate as servers. Second, WheelFS en-

sures that requests come only from users authorized to

use the deployment. Third, WheelFS enforces user-based

permissions on requests from clients. WheelFS assumes

that authorized servers behave correctly. A misbehaving

client can act as any user that has authenticated them-

selves to WheelFS from that client, but can only do things

for which those users have permission.

All communication takes place through authenticated

SSH channels. Each authorized server has a public/pri-

vate key pair which it uses to prove its identity. A central

administrator maintains a list of all legitimate server pub-

lic keys in a deployment, and distributes that list to ev-

ery server and client. Servers only exchange inter-server

traffic with hosts authenticated with a key on the list, and

clients only send requests to (and use responses from) au-

thentic servers.

Each authorized user has a public/private key pair;

WheelFS uses SSH’s existing key management support.

Before a user can use WheelFS on a particular client,

the user must reveal his or her private key to the client.

The list of authorized user public keys is distributed to all

servers and clients as a file in WheelFS. A server accepts

only client connections signed by an authorized user key.

A server checks that the authenticated user for a request

has appropriate permissions for the file or directory being

manipulated—each object has an associated access con-

trol list in its meta-data. A client dedicated to a particular

distributed application stores its “user” private key on its

local disk.

Clients check data received from other clients against

server-supplied SHA-256 checksums to prevent clients

from tricking each other into accepting unauthorized

modifications. A client will not supply data from its cache

to another client whose authorized user does not have read

permissions.

There are several planned improvements to this security

setup. One is an automated mechanism for propagating

changes to the set of server public keys, which currently

need to be distributed manually. Another is to allow the

use of SSH Agent forwarding to allow users to connect se-

curely without storing private keys on client hosts, which

would increase the security of highly privileged keys in

the case where a client is compromised.

6 Applications

WheelFS is designed to help the construction of wide-area

distributed applications, by shouldering a significant part

of the burden of managing fault tolerance, consistency,

and sharing of data among sites. This section evaluates

how well WheelFS fulfills that goal by describing four

applications that have been built using it.

All-Pairs-Pings. All-Pairs-Pings [37] monitors the net-

work delays among a set of hosts. Figure 2 shows a sim-

ple version of All-Pairs-Pings built from a shell script and

WheelFS, to be invoked by each host’s cron every few

minutes. The script pings the other hosts and puts the re-

sults in a file whose name contains the local host name



1 FILE=‘date +%s‘.‘hostname‘.dat

2 D=/wfs/ping

3 BIN=$D/bin/.EventualConsistency/

.MaxTime=5000/.HotSpot/.WholeFile

4 DATA=$D/.EventualConsistency/dat

5 mkdir -p $DATA/‘hostname‘

6 cd $DATA/‘hostname‘

7 xargs -n1 $BIN/ping -c 10 <

$D/nodes > /tmp/$FILE

8 cp /tmp/$FILE $FILE

9 rm /tmp/$FILE

10 if [ ‘hostname‘ = "node1" ]; then

11 mkdir -p $D/res

12 $BIN/process * > $D/res/‘date +%s‘.o

13 fi

Figure 2: A shell script implementation of All-Pairs-Pings us-

ing WheelFS.

and the current time. After each set of pings, a coordina-

tor host (“node1”) reads all the files, creates a summary

using the program process (not shown), and writes the

output to a results directory.

This example shows that WheelFS can help keep sim-

ple distributed tasks easy to write, while protecting the

tasks from failures of remote nodes. WheelFS stores each

host’s output on the host’s own WheelFS server, so that

hosts can record ping output even when the network is

broken. WheelFS automatically collects data files from

hosts that reappear after a period of separation. Finally,

WheelFS provides each host with the required binaries

and scripts and the latest host list file. Use of WheelFS in

this script eliminates much of the complexity of a previ-

ous All-Pairs-Pings program, which explicitly dealt with

moving files among nodes and coping with timeouts.

Distributed Web cache. This application consists

of hosts running Apache 2.2.4 caching proxies

(mod disk cache). The Apache configuration file

places the cache file directory on WheelFS:

/wfs/.EventualConsistency/.MaxTime=1000/

.Hotspot/cache/

When the Apache proxy can’t find a page in the cache

directory on WheelFS, it fetches the page from the ori-

gin Web server and writes a copy in the WheelFS di-

rectory, as well as serving it to the requesting browser.

Other cache nodes will then be able to read the page from

WheelFS, reducing the load on the origin Web server.

The .Hotspot cue copes with popular files, directing the

WheelFS clients to fetch from each others’ caches to in-

crease total throughput. The .EventualConsistency cue

allows clients to create and read files even if they cannot

contact the primary server. The .MaxTime cue instructs

WheelFS to return an error if it cannot find a file quickly,

causing Apache to fetch the page from the origin Web

server. If WheelFS returns an expired version of the file,

Apache will notice by checking the HTTP header in the

cache file, and it will contact the origin Web server for a

fresh copy.

Although this distributed Web cache implementation is

fully functional, it does lack features present in other sim-

ilar systems. For example, CoralCDN uses a hierarchy of

caches to avoid overloading any single tracker node when

a file is popular.

Mail service. The goal of Wheemail, our WheelFS-based

mail service, is to provide high throughput by spreading

the work over many sites, and high availability by replicat-

ing messages on multiple sites. Wheemail provides SMTP

and IMAP service from a set of nodes at these sites. Any

node at any site can accept a message via SMTP for any

user; in most circumstances a user can fetch mail from the

IMAP server on any node.

Each node runs an unmodified sendmail process to ac-

cept incoming mail. Sendmail stores each user’s messages

in a WheelFS directory, one message per file. The sep-

arate files help avoid conflicts from concurrent message

arrivals. A user’s directory has this path:

/wfs/mail/.EventualConsistency/.Site=X/

.KeepTogether/.RepSites=2/user/Mail/

Each node runs a Dovecot IMAP server [17] to serve users

their messages. A user retrieves mail via a nearby node

using a locality-preserving DNS service [20].

The .EventualConsistency cue allows a user to read

mail via backup servers when the primary for the user’s

directory is unreachable, and allows incoming mail to be

stored even if primary and all backups are down. The

.Site=X cue indicates that a user’s messages should be

stored at site X, chosen to be close to the user’s usual lo-

cation to reduce network delays. The .KeepTogether cue

causes all of a user’s messages to be stored on a single

replica set, reducing latency for listing the user’s mes-

sages [31]. Wheemail uses the default replication level of

three but uses .RepSites=2 to keep at least one off-site

replica of each mail. To avoid unnecessary replication,

Dovecot uses .RepLevel=1 for much of its internal data.

Wheemail has goals similar to those of Porcupine [31],

namely, to provide scalable email storage and retrieval

with high availability. Unlike Porcupine, Wheemail runs

on a set of wide-area data centers. Replicating emails over

multiple sites increases the service’s availability when a

single site goes down. Porcupine consists of custom-built

storage and retrieval components. In contrast, the use of a

wide-area file system in Wheemail allows it to reuse exist-

ing software like sendmail and Dovecot. Both Porcupine

and Wheemail use eventual consistency to increase avail-

ability, but Porcupine has a better reconciliation policy as



its “deletion record” prevents deleted emails from reap-

pearing.

File Distribution. A set of many WheelFS clients can co-

operate to fetch a file efficiently using the large read cues:

/wfs/.WholeFile/.Hotspot/largefile

Efficient file distribution may be particularly useful

for binaries in wide-area experiments, in the spirit of

Shark [6] and CoBlitz [29]. Like Shark, WheelFS uses co-

operative caching to reduce load on the file server. Shark

further reduces the load on the file server by using a dis-

tributed index to keep track of cached copies, whereas

WheelFS relies on the primary server to track copies.

Unlike WheelFS or Shark, CoBlitz is a CDN, so files

cannot be directly accessed through a mounted file sys-

tem. CoBlitz caches and shares data between CDN nodes

rather than between clients.

7 Implementation

The WheelFS prototype consists of 19,000 lines of C++

code, using pthreads and STL. In addition, the implemen-

tation uses a new RPC library (3,800 lines) that imple-

ments Vivaldi network coordinates [15].

The WheelFS client uses FUSE’s “low level” interface

to get access to FUSE identifiers, which it translates into

WheelFS-wide unique object IDs. The WheelFS cache

layer in the client buffers writes in memory and caches

file blocks in memory and on disk.

Permissions, access control, and secure SSH con-

nections are implemented. Distribution of public keys

through WheelFS is not yet implemented.

8 Evaluation

This section demonstrates the following points about the

performance and behavior of WheelFS:

• For some storage workloads common in distributed

applications, WheelFS offers more scalable perfor-

mance than an implementation of NFSv4.

• WheelFS achieves reasonable performance under a

range of real applications running on a large, wide-

area testbed, as well as on a controlled testbed using

an emulated network.

• WheelFS provides high performance despite net-

work and server failures for applications that indicate

via cues that they can tolerate relaxed consistency.

• WheelFS offers data placement options that allow

applications to place data near the users of that data,

without the need for special application logic.

• WheelFS offers client-to-client read options that help

counteract wide-area bandwidth constraints.

• WheelFS offers an interface on which it is quick and

easy to build real distributed applications.

8.1 Experimental setup

All scenarios use WheelFS configured with 64 KB blocks,

a 100 MB in-memory client LRU block cache supple-

mented by an unlimited on-disk cache, one minute object

leases, a lock time of L = 2 minutes, 12-bit slice IDs, 32-

bit object IDs, and a default replication level of three (the

responsible server plus two replicas), unless stated oth-

erwise. Communication takes place over plain TCP, not

SSH, connections. Each WheelFS node runs both a stor-

age server and a client process. The configuration service

runs on five nodes distributed across three wide-area sites.

We evaluate our WheelFS prototype on two testbeds:

PlanetLab [7] and Emulab [42]. For PlanetLab experi-

ments, we use up to 250 nodes geographically spread

across the world at more than 140 sites (we determine the

site of a node based on the domain portion of its host-

name). These nodes are shared with other researchers and

their disks, CPU, and bandwidth are often heavily loaded,

showing how WheelFS performs in the wild. These nodes

run a Linux 2.6 kernel and FUSE 2.7.3. We run the config-

uration service on a private set of nodes running at MIT,

NYU, and Stanford, to ensure that the replicated state ma-

chine can log operations to disk and respond to requests

quickly (fsync()s on PlanetLab nodes can sometimes

take tens of seconds).

For more control over the network topology and host

load, we also run experiments on the Emulab [42] testbed.

Each Emulab host runs a standard Fedora Core 6 Linux

2.6.22 kernel and FUSE version 2.6.5, and has a 3 GHz

CPU. We use a WAN topology consisting of 5 LAN clus-

ters of 3 nodes each. Each LAN cluster has 100 Mbps,

sub-millisecond links between each node. Clusters con-

nect to the wide-area network via a single bottleneck link

of 6 Mbps, with 100 ms RTTs between clusters.

8.2 Scalability

We first evaluate the scalability of WheelFS on a mi-

crobenchmark representing a workload common to dis-

tributed applications: many nodes reading data written by

other nodes in the system. For example, nodes running a

distributed Web cache over a shared storage layer would

be reading and serving pages written by other nodes.

In this microbenchmark, N clients mount a shared file

system containing N directories, either using NFSv4 or

WheelFS. Each directory contains ten 1 MB files. The

clients are PlanetLab nodes picked at random from the

set of nodes that support both mounting both FUSE and

NFS file systems. This set spans a variety of nodes dis-

tributed across the world, from nodes at well-connected

educational institutions to nodes behind limited-upload

DSL lines. Each client reads ten random files from the file



 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300

M
ed

ia
n 

la
te

nc
y 

in
 s

ec
on

ds
 p

er
 f

ile

Number of concurrent readers

WheelFS
NFS

NFS server’s local disk

Figure 3: The median time for a set of PlanetLab clients to read

a 1 MB file, as a function of the number of concurrently reading

nodes. Also plots the median time for a set of local processes to

read 1 MB files from the NFS server’s local disk through ext3.

system in sequence, and measures the read latency. The

clients all do this at the same time.

For WheelFS, each client also acts as a server, and is

the primary for one directory and all files within that di-

rectory. WheelFS clients do not read files for which they

are the primary, and no file is ever read twice by the same

node. The NFS server is a machine at MIT running De-

bian’s nfs-kernel-server version 1.0.10-6 using the default

configuration, with a 2.8 GHz CPU and a SCSI hard drive.

Figure 3 shows the median time to read a file as N

varies. For WheelFS, a very small fraction of reads fail be-

cause not all pairs of PlanetLab nodes can communicate;

these reads are not included in the graph. Each point on

the graph is the median of the results of at least one hun-

dred nodes (e.g., a point showing the latency for five con-

current nodes represents the median reported by all nodes

across twenty different trials).

Though the NFS server achieves lower latencies when

there are few concurrent clients, its latency rises sharply as

the number of clients grows. This rise occurs when there

are enough clients, and thus files, that the files do not fit

in the server’s 1GB file cache. Figure 3 also shows results

for N concurrent processes on the NFS server, accessing

the ext3 file system directly, showing a similar latency

increase after 100 clients. WheelFS latencies are not af-

fected by the number of concurrent clients, since WheelFS

spreads files and thus the load across many servers.

8.3 Distributed Web Cache

Performance under normal conditions. These exper-

iments compare the performance of CoralCDN and the

WheelFS distributed Web cache (as described in Sec-

tion 6, except with .MaxTime=2000 to adapt to Planet-

Lab’s characteristics). The main goal of the cache is to

reduce load on target Web servers via caching, and secon-

darily to provide client browsers with reduced latency and
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CoralCDN and the WheelFS-based Web cache, running on Plan-

etLab.

increased availability.

These experiments use forty nodes from PlanetLab

hosted at .edu domains, spread across the continental

United States. A Web server, located at NYU behind an

emulated slow link (shaped using Click [24] to be 400

Kbps and have a 100 ms delay), serves 100 unique 41KB

Web pages. Each of the 40 nodes runs a Web proxy.

For each proxy node there is another node less than 10

ms away that runs a simulated browser as a Web client.

Each Web client requests a sequence of randomly selected

pages from the NYU Web server. This experiment, in-

spired by one in the CoralCDN paper [19], models a flash

crowd where a set of files on an under-provisioned server

become popular very quickly.

Figures 4 and 5 show the results of these experiments.

Figure 4 plots both the total rate at which the proxies send

requests to the origin server and the total rate at which

the proxies serve Web client requests (the y-axis is a log

scale). WheelFS takes about twice as much time as Coral-
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Figure 6: The WheelFS-based Web cache running on Emulab

with failures, using the .EventualConsistency cue. Gray regions

indicate the duration of a failure.

Figure 7: The WheelFS-based Web cache running on Emulab

with failures, with close-to-open consistency. Gray regions indi-

cate the duration of a failure.

CDN to reduce the origin load to zero; both reach simi-

lar sustained aggregate Web client service rates. Figure 5

plots the cumulative distribution function (CDF) of the

request latencies seen by the Web clients. WheelFS has

somewhat higher latencies than CoralCDN.

CoralCDN has higher performance because it incor-

porates many application-specific optimizations, whereas

the WheelFS-based cache is built from more general-

purpose components. For instance, a CoralCDN proxy

pre-declares its intent to download a page, preventing

other nodes from downloading the same page; Apache,

running on WheelFS, has no such mechanism, so several

nodes may download the same page before Apache caches

the data in WheelFS. Similar optimizations could be im-

plemented in Apache.

Performance under failures. Wide-area network prob-

lems that prevent WheelFS from contacting storage nodes

should not translate into long delays; if a proxy cannot

quickly fetch a cached page from WheelFS, it should

ask the origin Web server. As discussed in Section 6, the

cues .EventualConsistency and .MaxTime=1000 yield

this behavior, causing open() to either find a copy of

the desired file or fail in one second. Apache fetches from

the origin Web server if the open() fails.

To test how failures affect WheelFS application perfor-

mance, we ran a distributed Web cache experiment on the

Emulab topology in Section 8.1, where we could control

the network’s failure behavior. At each of the five sites

there are three WheelFS Web proxies. Each site also has a

Web client, which connects to the Web proxies at the same

site using a 10 Mbps, 20 ms link, issuing five requests at a

time. The origin Web server runs behind a 400 Kbps link,

with 150 ms RTTs to the Web proxies.

Figures 6 and 7 compare failure performance of

WheelFS with the above cues to failure performance of
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load for the WheelFS-based Web cache, running on Emulab,

without failures.

close-to-open consistency with 1-second timeouts (.Max-

Time=1000). The y-axes of these graphs are log-scale.

Each minute one wide-area link connecting an entire site

to the rest of the network fails for thirty seconds and then

revives. This failure period is not long enough to cause

servers at the failed site to lose their slice locks. Web

clients maintain connectivity to the proxies at their lo-

cal site during failures. For comparison, Figure 8 shows

WheelFS’s performance on this topology when there are

no failures.

When a Web client requests a page from a proxy, the

proxy must find two pieces of information in order to find

a copy of the page (if any) in WheelFS: the object ID to

which the page’s file name resolves, and the file content

for that object ID. The directory information and the file

content can be on different WheelFS servers. For each

kind of information, if the proxy’s WheelFS client has

cached the information and has a valid lease, the WheelFS
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client need not contact a server. If the WheelFS client

doesn’t have information with a valid lease, and is us-

ing eventual consistency, it tries to fetch the information

from the primary; if that fails (after a one-second time-

out), the WheelFS client will try fetch from a backup; if

that fails, the client will use locally cached information (if

any) despite an expired lease; otherwise the open() fails

and the proxy fetches the page from the origin server. If a

WheelFS client using close-to-open consistency does not

have cached data with a valid lease, it first tries to contact

the primary; if that fails (after timeout), the proxy must

fetch the page from the origin Web server.

Figure 6 shows the performance of the WheelFS Web

cache with eventual consistency. The graph shows a pe-

riod of time after the initial cache population. The gray re-

gions indicate when a failure is present. Throughput falls

as WheelFS clients encounter timeouts to servers at the

failed site, though the service rate remains near 100 re-

quests/sec. The small load spikes at the origin server af-

ter a failure reflect requests queued up in the network by

the failed site while it is partitioned. Figure 7 shows that

with close-to-open consistency, throughput falls signifi-

cantly during failures, and hits to the origin server increase

greatly. This shows that a cooperative Web cache, which

does not require strong consistency, can use WheelFS’s

semantic cues to perform well under wide-area condi-

tions.

8.4 Mail

The Wheemail system described in Section 6 has a num-

ber of valuable properties such as the ability to serve and

accept a user’s mail from any of multiple sites. This sec-

tion explores the performance cost of those properties by

comparing to a traditional mail system that lacks those

properties.

IMAP and SMTP are stressful file system benchmarks.

For example, an IMAP server reading a Maildir-formatted

inbox and finding no new messages generates over 600
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Figure 10: The average latencies of individual SMTP requests,

for both Wheemail and the static system, on Emulab.

FUSE operations. These primarily consist of lookups on

directory and file names, but also include more than 30 di-

rectory operations (creates/links/unlinks/renames), more

than 30 small writes, and a few small reads. A single

SMTP mail delivery generates over 60 FUSE operations,

again consisting mostly of lookups.

In this experiment we use the Emulab network topol-

ogy described in Section 8.1 with 5 sites. Each site has

a 1 Mbps link to a wide-area network that connects all

the sites. Each site has three server nodes that each run a

WheelFS server, a WheelFS client, an SMTP server, and

an IMAP server. Each site also has three client nodes,

each of which runs multiple load-generation threads. A

load-generation thread produces a sequence of SMTP and

IMAP requests as fast as it can. 90% of requests are

SMTP and 10% are IMAP. User mailbox directories are

randomly and evenly distributed across sites. The load-

generation threads pick users and message sizes with

probabilities from distributions derived from SMTP and

IMAP logs of servers at NYU; there are 47699 users, and

the average message size is 6.9 KB. We measure through-

put in requests/second, with an increasing number of con-

current client threads.

When measuring WheelFS, a load-generating thread at

a given site only generates requests from users whose mail

is stored at that site (the user’s “home” site), and connects

only to IMAP and SMTP servers at the local site. Thus

an IMAP request can be handled entirely within a home

site, and does not generate any wide-area traffic (during

this experiment, each node has cached directory lookup

information for the mailboxes of all users at its site). A

load-generating thread generates mail to random users,

connecting to a SMTP server at the same site; that server

writes the messages to the user’s directory in WheelFS,

which is likely to reside at a different site. In this experi-

ment, user mailbox directories are not replicated.

We compare against a “static” mail system in which

users are partitioned over the 15 server nodes, with the
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Figure 11: CDF of client download times of a 50 MB file us-

ing BitTorrent and WheelFS with the .Hotspot and .WholeFile

cues, running on Emulab. Also shown is the time for a single

client to download 50 MB directly using ttcp.

SMTP and IMAP servers on each server node storing mail

on a local disk file system. The load-generator threads at

each site only generate IMAP requests for users at the

same site, so IMAP traffic never crosses the wide area net-

work. When sending mail, a load-generating client picks

a random recipient, looks up that user’s home server, and

makes an SMTP connection to that server, often across the

wide-area network.

Figure 9 shows the aggregate number of requests served

by the entire system per second. The static system can

sustain 112 requests per second. Each site’s 1 Mbps wide-

area link is the bottleneck: since 90% of the requests are

SMTP (message with an average size 6.85 KB), and 80%

of those go over the wide area, the system as a whole is

sending 4.3 Mbps across a total link capacity of 5 Mbps,

with the remaining wide-area bandwidth being used by

the SMTP and TCP protocols.

Wheemail achieves up to 50 requests per second, 45%

of the static system’s performance. Again the 1 Mbps

WAN links are the bottleneck: for each SMTP request,

WheelFS must send 11 wide-area RPCs to the target

user’s mailbox site, adding an overhead of about 40% to

the size of the mail message, in addition to the continuous

background traffic generated by the maintenance process,

slice lock renewal, Vivaldi coordinate measurement, and

occasional lease invalidations.

Figure 10 shows the average latencies of individual

SMTP requests for Wheemail and the static system, as the

number of clients varies. Wheemail’s latencies are higher

than those of the static system by nearly 60%, attributable

to traffic overhead generated by WheelFS.

Though the static system outperforms Wheemail for

this benchmark, Wheemail provides many desirable prop-

erties that the static system lacks. Wheemail transparently

redirects a receiver’s mail to its home site, regardless of

where the SMTP connection occurred; additional storage

Application LoC Reuses

CDN 1 Apache+mod disk cache

Mail service 4 Sendmail+Procmail+Dovecot

File distribution N/A Built-in to WheelFS

All-Pairs-Pings 13 N/A

Table 3: Number of lines of changes to adapt applications to

use WheelFS.

can be added to the system without major manual recon-

figuration; and Wheemail can be configured to offer toler-

ance to site failures, all without any special logic having

to be built into the mail system itself.

8.5 File distribution

Our file distribution experiments use a WheelFS network

consisting of 15 nodes, spread over five LAN clusters con-

nected by the emulated wide-area network described in

Section 8.1. Nodes attempt to read a 50 MB file simulta-

neously (initially located at an originating, 16th WheelFS

node that is in its own cluster) using the .Hotspot and

.WholeFile cues. For comparison, we also fetch the file

using BitTorrent [14] (the Fedora Core distribution of ver-

sion 4.4.0-5). We configured BitTorrent to allow unlimited

uploads and to use 64 KB blocks like WheelFS (in this

test, BitTorrent performs strictly worse with its usual de-

fault of 256 KB blocks).

Figure 11 shows the CDF of the download times, under

WheelFS and BitTorrent, as well as the time for a single

direct transfer of 50 MB between two wide-area nodes (73

seconds). WheelFS’s median download time is 168 sec-

onds, showing that WheelFS’s implementation of cooper-

ative reading is better than BitTorrent’s: BitTorrent clients

have a median download time of 249 seconds. The im-

provement is due to WheelFS clients fetching from nearby

nodes according to Vivaldi coordinates; BitTorrent does

not use a locality mechanism. Of course, both solutions

offer far better download times than 15 simultaneous di-

rect transfers from a single node, which in this setup has

a median download time of 892 seconds.

8.6 Implementation ease

Table 3 shows the number of new or modified lines of

code (LoC) we had to write for each application (exclud-

ing WheelFS itself). Table 3 demonstrates that developers

can benefit from a POSIX file system interface and cues

to build wide-area applications with ease.

9 Related Work

There is a humbling amount of past work on distributed

file systems, wide-area storage in general and the tradeoffs

of availability and consistency. PRACTI [8] is a recently-

proposed framework for building storage systems with ar-

bitrary consistency guarantees (as in TACT [43]). Like

PRACTI, WheelFS maintains flexibility by separating



policies from mechanisms, but it has a different goal.

While PRACTI and its recent extension PADS [9] are

designed to simplify the development of new storage or

file systems, WheelFS itself is a flexible file system de-

signed to simplify the construction of distributed appli-

cations. As a result, WheelFS’s cues are motivated by the

specific needs of applications (such as the .Site cue) while

PRACTI’s primitives aim at covering the entire spectrum

of design tradeoffs (e.g., strong consistency for operations

spanning multiple data objects, which WheelFS does not

support).

Most distributed file systems are designed to support

a workload generated by desktop users (e.g., NFS [33],

AFS [34], Farsite [2], xFS [5], Frangipani [12], Ivy [27]).

They usually provide a consistent view of data, while

sometimes allowing for disconnected operation (e.g.,

Coda [35] and BlueFS [28]). Cluster file systems such as

GFS [22] and Ceph [41] have demonstrated that a dis-

tributed file system can dramatically simplify the con-

struction of distributed applications within a large cluster

with good performance. Extending the success of clus-

ter file systems to the wide-area environment continues

to be difficult due to the tradeoffs necessary to combat

wide-area network challenges. Similarly, Sinfonia [3] of-

fers highly-scalable cluster storage for infrastructure ap-

plications, and allows some degree of inter-object con-

sistency via lightweight transactions. However, it targets

storage at the level of individual pieces of data, rather

than files and directories like WheelFS, and uses proto-

cols like two-phase commit that are costly in the wide

area. Shark [6] shares with WheelFS the goal of allowing

client-to-client data sharing, though its use of a central-

ized server limits its scalability for applications in which

nodes often operate on independent data.

Successful wide-area storage systems generally exploit

application-specific knowledge to make decisions about

tradeoffs in the wide-area environment. As a result, many

wide-area applications include their own storage lay-

ers [4, 14, 19, 31] or adapt an existing system [29, 40].

Unfortunately, most existing storage systems, even more

general ones like OceanStore/Pond [30] or S3 [1], are only

suitable for a limited range of applications and still require

a large amount of code to use. DHTs are a popular form

of general wide-area storage, but, while DHTs all offer

a similar interface, they differ widely in implementation.

For example, UsenetDHT [36] and CoralCDN [19] both

use a DHT, but their DHTs differ in many details and are

not interchangeable.

Some wide-area storage systems offer configuration

options in order to make them suitable for a larger range of

applications. Amazon’s Dynamo [16] works across multi-

ple data centers and provides developers with two knobs:

the number of replicas to read or to write, in order to con-

trol durability, availability and consistency tradeoffs. By

contrast, WheelFS’s cues are at a higher level (e.g., even-

tual consistency versus close-to-open consistency). Total

Recall [10] offers a per-object flexible storage API and

uses a primary/backup architecture like WheelFS, but as-

sumes no network partitions, focuses mostly on availabil-

ity controls, and targets a more dynamic environment.

Bayou [39] and Pangaea [32] provide eventual consis-

tency by default while the latter also allows the use of a

“red button” to wait for the acknowledgment of updates

from all replicas explicitly. Like Pangaea and Dynamo,

WheelFS provides flexible consistency tradeoffs. Addi-

tionally, WheelFS also provides controls in other cate-

gories (such as data placement, large reads) to suit the

needs of a variety of applications.

10 Conclusion

Applications that distribute data across multiple sites have

varied consistency, durability, and availability needs. A

shared storage system able to meet this diverse set of

needs would ideally provide applications a flexible and

practical interface, and handle applications’ storage needs

without sacrificing much performance when compared to

a specialized solution. This paper describes WheelFS, a

wide-area storage system with a traditional POSIX inter-

face augmented by cues that allow distributed applications

to control consistency and fault-tolerance tradeoffs.

WheelFS offers a small set of cues in four categories

(placement, durability, consistency, and large reads),

which we have found to work well for many common dis-

tributed workloads. We have used a WheelFS prototype

as a building block in a variety of distributed applications,

and evaluation results show that it meets the needs of

these applications while permitting significant code reuse

of their existing, non-distributed counterparts. We hope to

make an implementation of WheelFS available to devel-

opers in the near future.
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