Operating Systems

Lecture 1
Jinyang Li



Class goals

* Understand how an OS works by studying
its:
— Design principles
— Implementation realities

« Gain some hands-on experience with
implementing some OS components



OS makes a computer “usable”

 Whatis an OS?
 Why need an OS? (Why not directly programm h/w?)

— Lots of tedious details

— Devices differ in their programming details

— Redundant work across apps

— Many apps want to use the same device (simultaneously)



What's an OS?

* The small view:
— A library that manages hardware
* The big view:

— OS provides an abstract machine on top of
the physical machine

— The abstract machine has better properties
than the physical one



OS Is an abstract machine

User applications

e.g. emacs, firefox D

(€9 ’ ) Apps use OS interfaces:
OS kernel e.g. write data to a file

(e.g. Linux, OS X, Windows) write(fd, buffer); -

Hardware >
OS controls h/w using h/w’s inter@

(CPU, memory, disk, printer, e duta to disk
e.g. write data to dis
network cards) read h/w register

write h/w register to set up DMA
start DMA




This class Is about both
design & implementation

User applications
(e.g. emacs, firefox)

OS kernel
(e.g. Linux, OS X, Windows)

Hardware
(CPU, memory, disk, printer,
network cards)

T

What type of OS abstractions

to provide to apps
is part of the OS design

7

= —

N

How to program the
hardware is part of the
OS implementation

-




Typical OS services

Processes

Address space

File contents

File namespace (directories, pathnames)
Inter-process communication



OS design goals

Usability: abstract the hardware for programmer
convenience

Utilization: Multiplex the hardware among
multiple applications

Robustness: Isolate applications to contain
bugs; prevent bad apps from crashing OS

High Performance, low overhead



Why is OS design hard?

Performance vs. ease of programmability
Many features
Complex component interactions

Constantly evolving to handle new h/w,
new app demands etc.

Open problems: security, parallelism



Why should you take this
class?

* OS is the foundation of systems programming
— It's challenging and important

» Learn what goes under the hood so you'll be
better at:

— Using OS services effectively to build your own
programs

— Understanding the performance of your own programs
— Diagnosing bugs and security problems



Class structure

o Staff:
— Jinyang Li, 715 Broadway Rm 708
jinyang@cs.nyu.edu

* Lectures

— Teach basic OS concepts

— Read required book chapters, papers, handouts
before attending lecture

— Check class schedule on the web often!



Class structure

* Mini-labs
— 3 programming labs
— C-based

— Each lab is a fully functional small kernel
illustrating one OS functionality

— You need to have basic C programming
experience to do the labs!

 Two quizzes
— In-class quizzes, one mid-term, one final quiz

— Strong students can skip final quiz and do a
project instead (upon approval)



Class materials
« WebSite

— http://www.news.cs.nyu.edu/~jinyang/sp09

— Check schedule, announcements, reading
preparation, labs etc.

 Textbook

— Modern Operating Systems" by Andrew
Tanenbaum

— Lectures loosely follow this book
« Class mailing list:
— g22 2250 001_sp09@cs.nyu.edu

— Emaill the list your question so everybody can
contribute to the discussion




How are you evaluated?

 Class participation (10%)
* Three labs (15% each)
* Two quizzes (25% each)



Question?



