
Operating Systems

Lecture 1
Jinyang Li



Class goals

• Understand how an OS works by studying
its:
– Design principles
– Implementation realities

• Gain some hands-on experience with
implementing some OS components



OS makes a computer “usable”

• What is an OS?
• Why need an OS? (Why not directly programm h/w?)

– Lots of tedious details
– Devices differ in their programming details
– Redundant work across apps
– Many apps want to use the same device (simultaneously)



What’s an OS?

• The small view:
– A library that manages hardware

• The big view:
– OS provides an abstract machine on top of

the physical machine
– The abstract machine has better properties

than the physical one



OS is an abstract machine

Hardware
(CPU, memory, disk, printer, 

network cards)

OS kernel
(e.g. Linux, OS X, Windows)

User applications 
(e.g. emacs, firefox)

OS controls h/w using h/w’s interface
e.g. write data to disk
read h/w register
write h/w register to set up DMA
start DMA
….

Apps use OS interfaces:
e.g. write data to a file
write(fd, buffer);



This class is about both
design & implementation

Hardware
(CPU, memory, disk, printer, 

network cards)

OS kernel
(e.g. Linux, OS X, Windows)

User applications 
(e.g. emacs, firefox)

How to program the 
hardware is part of the 
OS implementation

What type of OS abstractions 
to provide to apps 
is part of the OS design



Typical OS services

• Processes
• Address space
• File contents
• File namespace (directories, pathnames)
• Inter-process communication
• …



OS design goals
• Usability: abstract the hardware for programmer

convenience
• Utilization: Multiplex the hardware among

multiple applications
• Robustness: Isolate applications to contain

bugs; prevent bad apps from crashing OS
• High Performance, low overhead



Why is OS design hard?

• Performance vs. ease of programmability
• Many features
• Complex component interactions
• Constantly evolving to handle new h/w,

new app demands etc.
• Open problems: security, parallelism



Why should you take this
class?

• OS is the foundation of systems programming
– It’s challenging and important

• Learn what goes under the hood so you’ll be
better at:
– Using OS services effectively to build your own

programs
– Understanding the performance of your own programs
– Diagnosing bugs and security problems



Class structure

• Staff:
– Jinyang Li, 715 Broadway Rm 708
jinyang@cs.nyu.edu

• Lectures
– Teach basic OS concepts
– Read required book chapters, papers, handouts

before attending lecture
– Check class schedule on the web often!



Class structure
• Mini-labs

– 3 programming labs
– C-based
– Each lab is a fully functional small kernel

illustrating one OS functionality
– You need to have basic C programming

experience to do the labs!
• Two quizzes

– In-class quizzes, one mid-term, one final quiz
– Strong students can skip final quiz and do a

project instead (upon approval)



Class materials
• WebSite

– http://www.news.cs.nyu.edu/~jinyang/sp09
– Check schedule, announcements, reading

preparation, labs etc.
• Textbook

– ``Modern Operating Systems'' by Andrew
Tanenbaum

– Lectures loosely follow this book
• Class mailing list:

– g22_2250_001_sp09@cs.nyu.edu
– Email the list your question so everybody can

contribute to the discussion



How are you evaluated?

• Class participation (10%)
• Three labs (15% each)
• Two quizzes (25% each)



Question?


